Reference problem ===================== Geometry --------- This is a cubic sample in :math:`1/8` representation using a :math:`\text{HEXA20}` element. .. image:: images/Object_1.svg :width: 484 :height: 248 .. _RefImage_Object_1.svg: Material properties ----------------------- The elastic properties are: * isotropic compressibility module: :math:`K=516200\mathrm{kPa}`; * shear modulus: :math:`\mu =238200\mathrm{kPa}`; * density [1] _ : :math:`{\rho }_{s}=2500\mathrm{kg}/{m}^{3}`. The anelastic properties of the cyclic Hujeux law come from the document referenced at the following internet address: < http://www.mssmat.ecp.fr/IMG /pdf/resp_loph40.pdf >` http://www.mssmat.ecp.fr/IMG /pdf/resp_loph40.pdf`_ < http://www.mssmat.ecp.fr/IMG /pdf/resp_loph40.pdf >``_. These are the parameters relating to Hostun sand: * power of the nonlinear elastic law: :math:`{n}_{e}=0.4`; * :math:`\beta =24`; * :math:`d=2.5`; * :math:`b=0.2`; * friction angle: :math:`\varphi =33°`; * characteristic angle: :math:`\psi =33°`; * critical pressure: :math:`{P}_{\mathrm{c0}}=-1\mathrm{MPa}`; * reference pressure: :math:`{P}_{\mathrm{ref}}=-1\mathrm{MPa}`; * elastic radius of isotropic mechanisms: :math:`{r}_{\mathrm{ela}}^{s}=0.001`; * elastic radius of deviatory mechanisms: :math:`{r}_{\mathrm{ela}}^{d}=0.005`; * :math:`{a}_{\mathrm{mon}}=0.008`; * :math:`{a}_{\mathrm{cyc}}=0.0001`; * :math:`{c}_{\mathrm{mon}}=0.2`; * :math:`{c}_{\mathrm{cyc}}=0.1`; * :math:`{r}_{\mathrm{hys}}=0.05`; * :math:`{r}_{\mathrm{mob}}=0.9`; * :math:`{x}_{m}=1`; * :math:`\mathrm{Dila}=1`. The hydraulic properties are: * Biot coefficient: :math:`B=1`; * the density of water: :math:`{\rho }_{e}=1000\mathrm{kg}/{m}^{3}`; * viscosity: :math:`\nu =0.001`; * intrinsic permeability: :math:`{K}^{\text{int}}={1.E}^{-8}{m}^{3}/\mathrm{kg}/s`; * the compressibility module of water: :math:`{K}_{e}={1.E}^{+12}\mathrm{Pa}`. Boundary conditions and loads ------------------------------------- Boundary conditions ~~~~~~~~~~~~~~~~~~~~~~~~ These are the symmetry conditions on the element, which represents :math:`1/8` of the sample. The movements are blocked on the front panels ( .. image:: images/Object_2.svg :width: 484 :height: 248 .. _RefImage_Object_2.svg: ), left lateral ( .. image:: images/Object_3.svg :width: 484 :height: 248 .. _RefImage_Object_3.svg: ) and lower ( .. image:: images/Object_4.svg :width: 484 :height: 248 .. _RefImage_Object_4.svg: ). Loading ~~~~~~~~~~ **Phase 1: consolidation of the sample up to the confinement pressure p0** The sample is brought to a homogeneous state of isostatic *actual* stresses :math:`{\sigma }_{\mathrm{xx}}^{0}={\sigma }_{\mathrm{yy}}^{0}={\sigma }_{\mathrm{zz}}^{0}={\sigma }^{0}=-30\mathrm{kPa}`, by imposing pressure :math:`{\sigma }_{0}` on the rear, right lateral, and upper faces of the element, while maintaining zero water pressures :math:`\text{PRE1}` in the sample. **Phase 2: undrained triaxial load** To obtain the non-drained conditions, zero hydraulic flows are imposed on all faces. By maintaining a pressure equal to :math:`{\sigma }_{0}` on the rear and right lateral faces, an alternating pressure loading with an amplitude :math:`\Delta \sigma` equal to :math:`15\mathit{kPa}` is applied to the upper face, so as to obtain a variation in the vertical stress :math:`{\sigma }_{\mathrm{zz}}` in the sample included in the interval :math:`\mathrm{-}45\mathit{kPa}\mathrm{\le }{\sigma }_{\mathit{zz}}\mathrm{\le }\mathrm{-}15\mathit{kPa}` (with the minus sign convention for compression). Results --------- The solutions are post-treated at point :math:`C`, in terms of effective isotropic pressure :math:`P` (:math:`\mathrm{=}\text{tr}(\sigma \text{'})\mathrm{/}3`), plastic volume deformation :math:`{\varepsilon }_{v}^{p}` and isotropic work hardening coefficients :math:`({r}_{\mathrm{iso}}^{m}+{r}_{\mathrm{ela}}^{\mathrm{iso}})` and :math:`({r}_{\mathit{iso}}^{c}+{r}_{\mathit{ela}}^{\mathit{iso}})` and deviations :math:`({r}_{d}^{m}+{r}_{\mathrm{ela}}^{d})` and :math:`({r}_{d}^{c}+{r}_{\mathrm{ela}}^{d})`. Validation is carried out by comparison with solutions GEFDYNfournies by Ecole Centrale Paris. .. [1] In the absence of gravity, the densities of soil and water do not intervene in the problem.