1. Reference problem#

1.1. Geometry#

Consider a cube with side \(\mathrm{100m}\).

H

G

Y

C

D

X

F

E

Z

B

A

Coordinates of the points (\(m\)):

1.2. Material properties#

Only the properties on which the solution depends are given here. The command file contains other material data (elasticity modules, thermal conductivity…) that play no role in the solution of the problem being treated.

Liquid water

Density (

\({\mathrm{kg.m}}^{-3}\)

)

Heat at constant pressure (\({\mathrm{J.K}}^{-1}\)) coefficient of thermal expansion of liquid (\({K}^{-1}\)) Dynamic viscosity of liquid water (\(\mathrm{Pa.s}\)) Relative permeability to water

103

4180 0. 0.001

_images/Object_1.svg

Vapeur

Specific heat (

\({\mathrm{J.K}}^{-1}\)

)

Initial enthalpy (latent heat of vaporization) \(J/\mathrm{Kg}\) Molar mass (\({\mathrm{kg.mol}}^{-1}\))

1900

2.5E6. 0.018

Gaz

Specific heat (

\({\mathrm{J.K}}^{-1}\)

)

Molar mass (\({\mathrm{kg.mol}}^{-1}\)) Relative gas permeability Gas viscosity (\({\mathrm{kg.m}}^{-1}\mathrm{.}{s}^{-1}\))

1900

0.018

_images/Object_2.svg

1,8E-5

Dissolved air

Specific heat (

\({\mathrm{J.K}}^{-1}\)

)

Henry’s constant (\({\mathrm{Pa.m}}^{3}\mathrm{.}{\mathrm{mol}}^{-1}\))

1900

50000

Skeleton

Heat capacity at constant stress (\({\mathrm{J.K}}^{-1}\))

1050

Initial state

Porosity

Temperature (\(K\)) Gas Pressure (\(\mathrm{Pa}\)) Gas Pressure () Vapor Pressure (\(\mathrm{Pa}\)) Initial Liquid Saturation (\(\mathrm{Pa}\))

0.3

300 1E5 3700 0.5

Constants

Ideal gas constant

8,315

Homogenized coefficients

Homogenized density (

\({\mathrm{kg.m}}^{-3}\)

)

Sorption isotherm

2200

_images/Object_3.svg

With

_images/Object_4.svg _images/Object_5.svg

1.3. Boundary conditions and loads#

On all sides:

Heat flow

_images/Object_6.svg

Zero hydraulic flow