Reference problem ===================== Geometry --------- Here we are considering a cube of dimension :math:`\mathrm{1m}\mathrm{\times }\mathrm{1m}\mathrm{\times }\mathrm{1m}`. Z 1 m .. image:: images/Object_1.svg :width: 12 :height: 15 .. _RefImage_Object_1.svg: D C 1 m .. image:: images/Object_2.svg :width: 12 :height: 15 .. _RefImage_Object_2.svg: .. image:: images/Object_3.svg :width: 12 :height: 15 .. _RefImage_Object_3.svg: .. image:: images/Object_4.svg :width: 12 :height: 15 .. _RefImage_Object_4.svg: B A Y 1 m X .. image:: images/1000010A0000271000002710863D401C4058C571.svg :width: 12 :height: 15 .. _RefImage_1000010A0000271000002710863D401C4058C571.svg: Coordinates of the points (in :math:`m`): .. csv-table:: "", ":math:`A` "," :math:`B` "," :math:`C` "," :math:`D`" ":math:`x` ", "0", "0", "0", "0.5", "1" ":math:`y` ", "0", "1", "1", "0.5", "1" ":math:`z` ", "0", "0", "0", "0.5", "1" Material properties ---------------------- Parameters of the law of elastic behavior: .. csv-table:: ":math:`E\mathrm{=}4500\mathit{MPa}`" ":math:`\nu \mathrm{=}0.3`" Parameters of the modified Hoek-Brown law: .. csv-table:: ":math:`{\gamma }^{\mathit{rup}}\mathrm{=}0.005`" ":math:`{\gamma }^{\mathit{res}}\mathrm{=}0.017`" ":math:`{(S{\sigma }_{c}^{2})}^{\mathit{end}}\mathrm{=}225{\mathit{MPa}}^{2}`" ":math:`{(S{\sigma }_{c}^{2})}^{\mathit{rup}}\mathrm{=}482.5675{\mathit{MPa}}^{2}`" ":math:`{(m{\sigma }_{c}^{2})}^{\mathit{end}}\mathrm{=}13.5\mathit{MPa}`" ":math:`{(m{\sigma }_{c}^{2})}^{\mathit{rup}}\mathrm{=}83.75\mathit{MPa}`" ":math:`\beta \mathrm{=}3\mathit{MPa}`" ":math:`{\phi }^{\mathit{rup}}\mathrm{=}15°`" ":math:`{\phi }^{\mathit{res}}\mathrm{=}30°`" ":math:`\alpha \mathrm{=}3.3`" Initial conditions, limits and loading ------------------------------------------------ The test is divided into two phases: 1. First, the sample is brought to a homogeneous state .. image:: images/Object_17.svg :width: 12 :height: 15 .. _RefImage_Object_17.svg: . For this, the corresponding confinement pressure is imposed on the front faces ( .. image:: images/Object_18.svg :width: 12 :height: 15 .. _RefImage_Object_18.svg: ), right lateral ( .. image: images/Object_19.svg :width: 12 :height: 15 .. _RefImage_Object_19.svg: ) and higher ( .. image: images/Object_20.svg :width: 12 :height: 15 .. _RefImage_Object_20.svg: ), the water pressures are zero everywhere and the movements are taken zero on the back faces ( .. image: images/Object_21.svg :width: 12 :height: 15 .. _RefImage_Object_21.svg: ), left lateral ( .. image: images/Object_22.svg :width: 12 :height: 15 .. _RefImage_Object_22.svg: ) and lower ( .. image: images/Object_23.svg :width: 12 :height: 15 .. _RefImage_Object_23.svg: ). 2. Once the homogeneous state is obtained, the movements are kept blocked on the rear, left and lower lateral faces. Hydraulic flows are zero on all sides. A displacement is imposed on the upper side ( .. image: images/Object_24.svg :width: 12 :height: 15 .. _RefImage_Object_24.svg: ) so as to obtain a deformation .. image: images/Object_25.svg :width: 12 :height: 15 .. _RefImage_Object_25.svg: equal to — 25% from the start of the second phase, in constant deformation increments .. image: images/Object_26.svg :width: 12 :height: 15 .. _RefImage_Object_26.svg: . On the front and right lateral faces, limit conditions under total stress are imposed: .. image: images/Object_27.svg :width: 12 :height: 15 .. _RefImage_Object_27.svg: .