Reference problem ===================== Geometry --------- .. _v7.31.126-cube: .. figure:: images/Object_1.svg :width: 480 :height: 360 height: :math:`h=1` m, width: :math:`l=1` m, thickness: :math:`e=1` m Material properties ---------------------- The values used for the sixteen parameters of the Barcelona model are given in :numref:`v7.31.126-parametres_barcelone`. .. _v7.31.126-parametres_barcelone: .. list-table:: Paramètres du modèle de Barcelone. *-**Category** - **Appellation** - **Definition** - **Symbol** - **Value** * - Elasticity - | *BulkModulus* | *ShearModulus* | *SwellingIndex* | *SuccionIndex* | *SuccionModulus* - | Compressibility module | Shear module | Elastic compressibility coefficient at:math: `p_c=\ mathrm {Cte} ` | Elastic compressibility coefficient at:math: `p"=\ mathrm {Cte} ` | Initial compressibility module in capillary pressure - |:math: `K` |:math: `\ mu` |:math: `\ kappa` |:math: `\ kappa_s` |:math: `k_S` - |:math: `15` MPa |:math: `10` MPa |:math: `0.02` |:math: `0.008` |:math: `30` MPa * - Initial elasticity domain - | *critstateSlope* | *initConspress* | *YieldSuccion* - | Critical state slope | Initial consolidation pressure at:math: `p_c=0` | Initial irreversibility threshold under capillary pressure - |:math: `M` |:math: `p_ {con} ^0` |:math: `s_0^0` - |:math: `1` |:math: `100` kPa |:math: `200` kPa * - | Pressure work hardening | capillary - | *YieldTensSlope* | *PlastSuccionIndex* - | Slope of the isotropic tensile limit | Plastic compressibility coefficient at:math: `p"=\ mathrm {Cte} ` - |:math: `k_s` |:math: `\ lambda_s` - |:math: `0.6` |:math: `0.08` * - | Work hardening by deformation | volume plastic - | *PlastStrainIndex* | *PlastStrainPara1* | *PlastStrainPara2* | *RefeConsPress* - | Total compressibility coefficient at:math: `p_c=0` |:math: `1^ {er} `total compressibility coefficient parameter at:math: `p_c=\ mathrm {Cte}` |:math: `2^ {nd} `total compressibility coefficient parameter at:math: `p_c=\ mathrm {Cte}` | Reference consolidation pressure to:math: `p_c=0` - |:math: `\ lambda_0` |:math: `\ beta` |:math: `r` |:math: `p_r` - |:math: `0.2` |:math: `12.5` mpa:Math: `^ {-1} ` |:math: `0.75` |:math: `100` kPa * - Plastic flow - | *FlowCorrection* - | Plastic flow correction coefficient - |:math: `\ alpha` - |:math: `1` * - Initial state - | *initVoidsRatio* - | Initial void index - |:math: `e_0` - |:math: `0.9` The properties of fluids (dry gas and liquid water) and of diffusion within the solid skeleton, necessary to solve the coupled calculation LIQU_GAZ, are presented in :numref:`v7.31.126-parametres_fluides`. .. _v7.31.126-parametres_fluides: .. list-table:: Paramètres des fluides et de diffusion. *-**Keyword** - **Definition** - **Symbol** - **Value** * - THM_LIQU - | Initial density of the liquid | Dynamic liquid viscosity | Inverse of liquid compressibility - |:math: `\ rho_ {q} ^0` |:math: `\ mu_ {q}` |:math: `1/K_ {q} ` - |:math: `1000` kg.m:math: `^ {-3} ` |:math: `1\ times 10^ {-3} `Not. |:math: `1/ (2\ times 10^9) `pa:Math: `^ {-1}` * - THM_GAZ - | Molar mass of dry gas | Dynamic viscosity of dry gas - |:math: `M_ {as} ^ {ol} ` |:math: `\ mu_ {as}` - |:math: `0.03` kg.mole:math: `^ {-1} ` |:math: `9\ times10^ {-6} `Not. * - THM_DIFFU - | Isotropic Biot coefficient | Intrinsic permeability | Initial homogenized density | Isothermal saturation function | capillary pressure - |:math: `b` |:math: `K^ {int} ` |:math: `\ rho_ {home} ^ {0}` | VG_N, VG_SR, VG_SMAX, | VG_SATUR, VG_PR (Van Genuchten) - |:math: `1` |:math: `1\ times 10^ {-8} `m:math: `^ {2}` |:math: `2400` kg.m:math: `^ {-3} ` |:math: `1.6, 0, 0.99, ` |:math: `1, 16` MPa Boundary conditions and loads ------------------------------------- The gas pressure remains constant equal to :math:`\mathrm{PRE2}={1}` Pa. In the first loading phase, desaturation is carried out, during which the capillary pressure decreases to zero since :math:`\mathrm{PRE1}={100}` kPa. In the second phase, isotropic compression is carried out, until the average stress :math:`\sigma_m=-400` kPa is reached. In the third and final phase, while maintaining the mean stress, the capillary pressure is increased to :math:`\mathrm{PRE1}={300}` kPa.