1. Reference problem#
1.1. Geometry#
F
D
C
E
B
A
Coordinates of the points (\(m\)):
Point |
\(X\) |
|
\(A\) |
0.425 |
-10 |
\(B\) |
1,1225 |
-10 |
\(C\) |
1,1225 |
0 |
\(D\) |
0.425 |
0 |
\(E\) |
10 |
-10 |
\(F\) |
10 |
0 |
The part delimited by \(\mathit{ABCD}\) will be called \(\mathit{BO}\) and the part \(\mathit{BEFC}\), \(\mathit{BG}\).
For the 3D version of the wtnv125 test, the geometry is extruded with a thickness of \(\mathrm{5,181}m\).
1.2. Material properties#
The properties of the material are shown in the table below.
Liquid water |
Density (\({\mathit{kg.m}}^{\mathrm{-}3}\)) Heat at constant pressure (\({\mathit{J.K}}^{\mathrm{-}1}\)) Coefficient of thermal expansion of liquid (\({K}^{\mathrm{-}1}\)) Dynamic viscosity of liquid water (\(\mathit{Pa.s}\)) |
103 4180 10-4 10-3 |
Gaz |
Specific heat (\({\mathit{J.K}}^{\mathrm{-}1}\)) Molar mass (\({\mathit{kg.mol}}^{\mathrm{-}1}\)) |
1000 0.02896 1.8. 10-5 |
Sturdy (\(\mathit{BO}\)) |
Density (\({\mathit{kg.m}}^{\mathrm{-}3}\)) Drained Young’s Modulus \(E\) (\(\mathit{Pa}\)) Poisson’s Ratio |
2670 1.9.1020 0.2 |
Initial state (\(\mathit{BO}\)) |
Porosity Temperature (\(K\)) Gas Pressure (\(\mathit{Pa}\)) Vapor Pressure (\(\mathit{Pa}\)) Initial Capillary Pressure (\(\mathit{Pa}\)) |
0.35 293 1E5 2320 5.107 (\(S\mathrm{=}\mathrm{0,57}\)) |
Homogenized coefficients (\(\mathit{BO}\)) |
Homogenized density (\({\mathit{kg.m}}^{\mathrm{-}3}\)) Saturation Intrinsic permeability (\({m}^{2}\)) Relative liquid permeability () Relative liquid permeability Relative gas permeability (\({\mathit{J.K}}^{\mathrm{-}1}\)) Biot Thermal conductivities |
\(2670\) \(S({P}_{c})\mathrm{=}0.99(1\mathrm{-}{6.10}^{\mathrm{-}9}{P}_{c})\) \({10}^{\mathrm{-}20}\) \({\mathit{kr}}_{w}(S)\mathrm{=}S\) \({\mathit{kr}}_{\mathit{gz}}(S)\mathrm{=}1\mathrm{-}S\) \(482\) \(1\) \(\begin{array}{c}{\lambda }_{S}^{T}(S)\mathrm{=}0.35\mathrm{\cdot }S\\ {\lambda }_{T}^{T}(S)\mathrm{=}0.6\\ {\lambda }_{\mathit{CT}}^{T}(S)\mathrm{=}0.728\end{array}\) |
Solid (BG) |
Density (\({\mathit{kg.m}}^{\mathrm{-}3}\)) Drained Young’s Modulus \(E\) (\(\mathit{Pa}\)) Poisson’s Ratio |
\(2670\) \(\mathrm{1,9}{.10}^{20}\) \(0.2\) |
Initial state (BG) |
Porosity Temperature (\(K\)) Gas Pressure (\(\mathit{Pa}\)) Vapor Pressure (\(\mathit{Pa}\)) Initial Capillary Pressure (\(\mathit{Pa}\)) |
\(\mathrm{0,05}\) \(293\) \(1E5\) \(2320\) \({7.10}^{7}\) (\(S\mathrm{=}\mathrm{0,81}\)) |
Homogenized coefficients (BG) |
Homogenized density (\({\mathit{kg.m}}^{\mathrm{-}3}\)) Saturation Intrinsic permeability (\({m}^{2}\)) Relative liquid permeability () Relative liquid permeability Relative gas permeability (\({\mathit{J.K}}^{\mathrm{-}1}\)) Biot Thermal conductivity |
\(2670\) \(S({P}_{c})\mathrm{=}0.99(1\mathrm{-}{6.10}^{\mathrm{-}9}{P}_{c})\) \({10}^{\mathrm{-}19}\) \({\mathit{kr}}_{w}(S)\mathrm{=}S\) \({\mathit{kr}}_{\mathit{gz}}(S)\mathrm{=}1\mathrm{-}S\) \(706\) \(1\) \(\begin{array}{c}{\lambda }_{S}^{T}(S)\mathrm{=}0.05\mathrm{\cdot }S\\ {\lambda }_{T}^{T}(S)\mathrm{=}0.6\\ {\lambda }_{\mathit{CT}}^{T}(S)\mathrm{=}1.539\end{array}\) |
1.3. Boundary conditions and loads#
On all edges: Zero hydraulic flow
The only driver here is the saturation of one medium by another.