Reference problem ===================== In this test case, we study the hydraulic behavior of a saturated porous medium constituted by a single fluid: water in its liquid phase. In *Code_Aster*, it is an HM model. According to the models, the associated fluid behavior law is either of type LIQU_SATU (models A and C) or of type LIQU_GAZ_ATM (models B and D). Geometry --------- .. image:: images/Object_2.svg :width: 250 :height: 242 .. _RefImage_Object_2.svg: Illustration 1: Geometry Coordinates of points :math:`(m)`: :math:`A(\mathrm{-}0.5,\mathrm{-}0.5)`; :math:`C(0.5,0.5)` :math:`B(0.5,\mathrm{-}0.5)`; :math:`D(\mathrm{-}0.5,0.5)` Material properties ---------------------- +------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |Liquid water |Density |:math:`{10}^{3}` | + + :math:`({\mathrm{kg.m}}^{-3})` + + | | | :math:`0.001` :math:`{K}_{e}=3.77{10}^{-9}` | + + Dynamic viscosity of liquid water :math:`(\mathrm{Pa.s})` 1/Compressibility :math:`({\mathit{Pa}}^{\mathrm{-}1})` + + | | | | +------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |Solid |Drained Young's Modulus |:math:`225{10}^{6}` | + + :math:`E(\mathrm{Pa})` + + | | | :math:`0` | + + Poisson's Ratio + + | | | | +------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |Initial state |Porosity |:math:`0.4` | + + + + | | Temperature :math:`(K)` Liquid Pressure :math:`(\mathrm{Pa})` Vapor Pressure :math:`(\mathrm{Pa})` | :math:`273` :math:`0` :math:`1` | + + + + | | | | +------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |Constants |Ideal gas constant |:math:`8.32` | +------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |Homogenized coefficients|Homogenized density |:math:`1600` | + + :math:`({\mathrm{kg.m}}^{-3})` + + | | | | + + Sorption isothermal Biot coefficient Intrinsic permeability :math:`({m}^{2})` + .. image:: images/Object_12.svg + | | | :width: 250 | + + + :height: 242 + | | | | + + + + | | | | + + + + | | | | + + + :math:`1` :math:`{K}_{\text{int}}={10}^{-18}` + | | | | +------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ **Table** 1.2-1 **: Material data** The gravity of water is overlooked. Boundary conditions and loads ------------------------------------- Full item: blocked trips :math:`{u}_{x}={u}_{y}={u}_{z}=0` (this is a purely hydraulic case, the mechanics being blocked). Upper side: water flow: :math:`{Q}_{\mathrm{lq}}=0.005{\mathrm{kg.s}}^{-1}\mathrm{.}{m}^{-2}` Lower side: water flow :math:`{Q}_{\mathrm{lq}}=0` Side faces: Elsewhere: zero flow Initial conditions -------------------- The displacement fields and liquid pressure fields are initially zero and the reference temperature is set to :math:`{T}_{0}\mathrm{=}273°K`.