13. K modeling#

Fluid behavior: THMC = LIQU_SATU

13.1. Characteristics of J modeling#

  • Volume modeling with second gradient

  • 1 mesh HEXA20 from 3D modelling_ THMS_DIL: THM_HEXA20S_DIL

This is the same modeling as \(J\) but with a second gradient. The results will therefore be significantly different from the reference case. This is therefore a case of non-regression.

13.2. Tested sizes and results#

Since this test is a non-regression test, we are satisfied with a simple validation over 2 moments.

Discretization in time: Several time steps (16) to study the evolution of pressure during the transition phase until it stabilizes. The time pattern is implicit \((\vartheta =1)\).

List of calculation times in seconds: \({5.10}^{3},{10}^{10}\)

Node

Order Number

Press

Reference

\((\mathit{Pa})\) « 

Tolerance \((\text{\%})\)

\(\mathit{NO20}\)

8 (t=5.10 3s)

\(\mathit{PRE1}\)

65

1.0

16 (t=1010s)

\(\mathit{PRE1}\)

5.10+3

1.0

\(\mathit{NO1}\)

8 (t=5.103s)

\(\mathit{PRE1}\)

-65

1.0

16 (t=1010s)

\(\mathit{PRE1}\)

-5.10+3

1.0

This test also serves to validate the OBSERVATION keyword, on the HEXA20 mesh:

Observation

CHAMP

CMP

EVAL_ELGA

EVAL_CHAM

1

SIEF_ELGA

SIP

VALE — POINT =1

MIN

2

SIEF_ELGA

SIYY

MIN

MIN

3

SIEF_ELGA

SIZZ

MIN

MIN

3

SIEF_ELGA

SIP

MIN

MIN

With the following results (NON_REGRESSION):

Observation

Order Number

Reference

\((\mathrm{Pa})\) « 

Tolerance \((\text{\%})\)

1

16 (t=10 10s)

2886.7983561532

1.00E-006

2

16 (t=1010s)

-4999.9526983562

1.00E-006

3

16 (t=1010s)

-9.74094E-18

1.00E-012 (absolute)

4

16 (t=1010s)

-6.21766E-17

1.00E-012 (absolute)

5 - MINI_ABS

16 (t=10 10s)

4999.9526983751

1.00E-006

6 - MAXI_ABS

16 (t=10 10s)

5000.0469320954

1.00E-006