Modeling A ============== Characteristics of modeling A ------------------------------------- Plane modeling: D_ PLAN_HHM .. image:: images/100010E20000159A000013A3E04FB40CCC36EFED.svg :width: 288 :height: 288 .. _RefImage_100010E20000159A000013A3E04FB40CCC36EFED.svg: 1 mesh DPQ8de modeling D_ PLAN_HHM: HHM_ DPQ8 Model A result ----------------------------- Discretization in time: Several time steps (16) to study the evolution of pressure during the transition phase until it stabilizes. The time pattern is implicit :math:`(\theta \mathrm{=}1)`. List of calculation times in seconds: :math:`\mathrm{1,}\mathrm{5,}\mathrm{10,}\mathrm{50,}\mathrm{100,}\mathrm{500,}{10}^{3},5.\times {10}^{3},{10}^{4},5.\times {10}^{4},{10}^{5},5.\times {10}^{5},{10}^{6},5.\times {10}^{6},{10}^{7},{10}^{10}\mathrm{.}` Nodal unknowns: fluid pressures evaluated in *Code_Aster* are variations from initial pressures, which is why this table shows pressure variations in our comparison between the*Code_Aster* calculation and the reference solution. In addition, the pressure variables used in*Code_Aster* to evaluate the laws of behavior are total gas pressure and capillary pressure. .. csv-table:: "**Node/point**", "**Order number/instant** :math:`(s)` ", "**Value**", "**Press** :math:`(\mathrm{Pa})` ", "**Tolerance**" ":math:`\mathrm{1,2}\mathrm{,5}/A,B` "," :math:`1(t=1s)` "," :math:`\mathrm{PRE1}` "," ", "-8,565.10-3"," :math:`{10}^{-4}`" "", ":math:`2(t=5s)` "," :math:`\mathrm{PRE1}` ", "-4,282.10-2"," :math:`{10}^{-4}`" "", ":math:`3(t=10s)` "," :math:`\mathrm{PRE1}` ", "-8,565.10-2"," :math:`{10}^{-4}`" "", ":math:`4(t=50s)` "," :math:`\mathrm{PRE1}` ", "-4,282.10-1"," :math:`1\text{\%}`" "", ":math:`8(t={5.10}^{3}s)` "," :math:`\mathrm{PRE1}` ", "-4,26.10+1"," :math:`1\text{\%}`" "", ":math:`16(t={10}^{10}s)` "," :math:`\mathrm{PRE1}` ", "-4,996.10+3"," :math:`1\text{\%}`" "", ":math:`1(t=1s)` "," :math:`\mathrm{PRE2}` ", "6,796.10-6"," :math:`{10}^{-4}`" "", ":math:`2(t=5s)` "," :math:`\mathrm{PRE2}` ", "3,398.10-5"," :math:`{10}^{-4}`" "", ":math:`3(t=10s)` "," :math:`\mathrm{PRE2}` ", "6,796.10-5"," :math:`{10}^{-4}`" "", ":math:`4(t=50s)` "," :math:`\mathrm{PRE2}` ", "3,398.10-4"," :math:`{10}^{-4}`" "", ":math:`8(t={5.10}^{3}s)` "," :math:`\mathrm{PRE2}` ", "3,384.10-2"," :math:`{10}^{-4}`" "", ":math:`16(t={10}^{10}s)` "," :math:`\mathrm{PRE2}` ", "3,964"," :math:`{10}^{-3}`" ":math:`\mathrm{3,4}\mathrm{,7}/C,D` "," :math:`1(t=1s)` "," :math:`\mathrm{PRE1}` ", "8,565.10-3"," :math:`{10}^{-4}`" "", ":math:`2(t=5s)` "," :math:`\mathrm{PRE1}` ", "4,282.10-2"," :math:`{10}^{-4}`" "", ":math:`3(t=10s)` "," :math:`\mathrm{PRE1}` ", "8,565.10-2"," :math:`{10}^{-4}`" "", ":math:`4(t=50s)` "," :math:`\mathrm{PRE1}` ", "4,282.10-1"," :math:`1\text{\%}`" "", ":math:`8(t={5.10}^{3}s)` "," :math:`\mathrm{PRE1}` ", "4,26.10+1"," :math:`1\text{\%}`" "", ":math:`16(t={10}^{10}s)` "," :math:`\mathrm{PRE1}` ", "4,996.10+3"," :math:`1\text{\%}`" "", ":math:`1(t=1s)` "," :math:`\mathrm{PRE2}` ", "-6,796.10-6"," :math:`{10}^{-4}`" "", ":math:`2(t=5s)` "," :math:`\mathrm{PRE2}` ", "-3,398.10-5"," :math:`{10}^{-4}`" "", ":math:`3(t=10s)` "," :math:`\mathrm{PRE2}` ", "-6,796.10-5"," :math:`{10}^{-4}`" "", ":math:`4(t=50s)` "," :math:`\mathrm{PRE2}` ", "-3,398.10-4"," :math:`{10}^{-4}`" "", ":math:`8(t={5.10}^{3}s)` "," :math:`\mathrm{PRE2}` ", "-3,384.10-2"," :math:`{10}^{-4}`" "", ":math:`16(t={10}^{10}s)` "," :math:`\mathrm{PRE2}` ", "-3,964"," :math:`{10}^{-3}`"