Reference problem ===================== Presentation ------------ In this test case, we study the thermo-hydro-mechanical behavior of a saturated porous medium constituted by a single fluid: water in its liquid phase. In *Code_Aster*, this is a THM model. The associated law of fluid behavior is of type LIQU_SATU. Geometry --------- We consider a cube with a side of 1 m centered on the center of the :math:`(-\mathrm{0,5}\le x\le \mathrm{0,5};-\mathrm{0,5}\le y\le \mathrm{0,5};-\mathrm{0,5}\le z\le \mathrm{0,5};)` axis. .. image:: images/10010F2C00001C0000001C3388288620E469299A.svg :width: 277 :height: 290 .. _RefImage_10010F2C00001C0000001C3388288620E469299A.svg: Material properties ---------------------- .. csv-table:: "solid", "Density :math:`({\mathrm{kg.m}}^{-3})` Drained Young's module :math:`E(\mathrm{Pa})` Poisson's ratio Coefficient of thermal expansion of solid :math:`({K}^{-1})` "," :math:`2.\times {10}^{3}` :math:`225.\times {10}^{6}` :math:`0.` :math:`8.\times {10}^{-6}`" "Fluid", "Density :math:`({\mathrm{kg.m}}^{-3})` Heat at constant pressure :math:`({\mathrm{J.K}}^{-1})` Coefficient of thermal expansion of liquid :math:`({K}^{-1})` Derivative of the conductivity of the fluid with respect to temperature", ":math:`{10}^{3}` :math:`2.85\times {10}^{6}` :math:`{10}^{-4}` :math:`0.`" "Thermal", "Homogenized conductivity :math:`({\mathrm{W.K}}^{-1}{m}^{-1})` Derivative of conductivity homogenized with respect to temperature", ":math:`1.7` :math:`0.`" "Homogenization coefficients", "Coefficient of :math:`\mathrm{Biot}` Porosity", ":math:`{10}^{-12}` :math:`0.4`" "Homogenized coefficients", "Density :math:`({\mathrm{kg.m}}^{-3})` Constant stress heat :math:`({\mathrm{J.K}}^{-1})` "," :math:`1.6\times {10}^{3}` :math:`2.85\times {10}^{6}`" Boundary conditions and loads ------------------------------------- * Full item: fluid pressure :math:`\mathrm{PRE1}=500.0\mathrm{Pa}` (no flow or variation in the mass of water) * Underside: trips :math:`{u}_{x}=0.0m,{u}_{y}=0.0m,{u}_{z}=0.0\mathrm{m.}` * Upper side: Displacement :math:`{u}_{z}={10}^{-3}m` Initial conditions -------------------- The displacement fields, pressure, temperature are initially all zero, the reference temperature is set to :math:`{T}_{0}\mathrm{=}273°K`.