3. B modeling#

3.1. Characteristics of modeling and meshing#

3D_HM modeling

The geometry is the same as for case 1.

Number of knots: 27

Number of meshes and types: 8 HEXA20 and 24 QUA8.

For reasons of calculation time, only 8000 s are modelled.

3.2. Property of materials#

This is the same case as before but with a VISC_MAXWELL_MT model, which in fact will generate different viscosity properties since with the following formula:

\(\begin{array}{c}{\mathrm{\eta }}_{v}^{\mathit{mt}}={\mathrm{\eta }}_{v}^{s}\frac{4{\mathrm{\eta }}_{d}^{s}(1-\mathrm{\phi })}{3\mathrm{\phi }{\mathrm{\eta }}_{v}^{s}+4{\mathrm{\eta }}_{d}^{s}}\\ {\mathrm{\eta }}_{d}^{\mathit{mt}}={\mathrm{\eta }}_{d}^{s}\frac{(1-\mathrm{\phi })(9{\mathrm{\eta }}_{v}^{s}+8{\mathrm{\eta }}_{d}^{s})}{9{\mathrm{\eta }}_{v}^{s}(1+\frac{2}{3}\mathrm{\phi })+8{\mathrm{\eta }}_{d}^{s}(1+\frac{3}{2}\mathrm{\phi })}\end{array}\)

and with the values entered which are those of the skeleton:

Volume viscosity \({\mathrm{\eta }}_{v}^{s}=1.{10}^{30}\) \(\mathit{Pa}\mathrm{.}s\)

Deviatoric viscosity \({\mathrm{\eta }}_{d}^{s}=1.59{10}^{7}\) \(\mathit{Pa}\mathrm{.}s\)

The initial parameters for the porous medium are obtained:

Volume viscosity of the medium \({\mathrm{\eta }}_{v}=2.8{10}^{8}\) \(\mathit{Pa}\mathrm{.}s\)

Deviatoric viscosity of the medium \({\mathrm{\eta }}_{d}=1.41{10}^{7}\) \(\mathit{Pa}\mathrm{.}s\)

This case, unlike the previous one, therefore has a « complete » viscosity and the medium will deform much more.

3.3. Tested sizes and results#

Location

Instant

Move

Aster

Point \(D\)

\(\mathit{DX}\)

-0.106

Location

Instant

Constraint ( \(\mathit{Pa}\) )

Aster

Point \(D\)

\({\mathrm{\sigma }}_{\text{yy}}\)

-577739