Benchmark solution ===================== Reference solution for linear water pressure -------------------------------------------------------- .. image:: images/Object_23.svg :width: 19 :height: 21 .. _RefImage_Object_23.svg: , .. image:: images/Object_24.svg :width: 19 :height: 21 .. _RefImage_Object_24.svg: .. image:: images/Object_25.svg :width: 19 :height: 21 .. _RefImage_Object_25.svg: designating the stresses, deformations and water pressures obtained in phase one has: .. image:: images/Object_26.svg :width: 19 :height: 21 .. _RefImage_Object_26.svg: In this writing, .. image:: images/Object_27.svg :width: 19 :height: 21 .. _RefImage_Object_27.svg: designates the Biot module and .. image:: images/Object_28.svg :width: 19 :height: 21 .. _RefImage_Object_28.svg: . The conditions at the limits of zero flow and the conservation of the water body give .. image:: images/Object_29.svg :width: 19 :height: 21 .. _RefImage_Object_29.svg: The boundary conditions on the side walls and the fact that the stress state is homogeneous give: .. image:: images/Object_30.svg :width: 19 :height: 21 .. _RefImage_Object_30.svg: So we finally have to solve the two equations: .. image:: images/Object_31.svg :width: 19 :height: 21 .. _RefImage_Object_31.svg: And we get: .. image:: images/Object_32.svg :width: 19 :height: 21 .. _RefImage_Object_32.svg: In our case, .. image:: images/Object_33.svg :width: 19 :height: 21 .. _RefImage_Object_33.svg: Development of the analytical solution CJS ------------------------------------------- We always have: for deformations: .. image:: images/Object_34.svg :width: 19 :height: 21 .. _RefImage_Object_34.svg: for constraints: .. image:: images/Object_35.svg :width: 19 :height: 21 .. _RefImage_Object_35.svg: **Elastic phase:** By simply writing the elastic law, it comes: .. image:: images/Object_36.svg :width: 19 :height: 21 .. _RefImage_Object_36.svg: .. image:: images/Object_37.svg :width: 19 :height: 21 .. _RefImage_Object_37.svg: Moreover, we also know that during this phase .. image:: images/Object_38.svg :width: 19 :height: 21 .. _RefImage_Object_38.svg: (:math:`\mathrm{=}\mathit{trace}(\sigma )`) remains constant because .. image:: images/Object_39.svg :width: 19 :height: 21 .. _RefImage_Object_39.svg: . For the components of the diverter, we deduce: .. image:: images/Object_40.svg :width: 19 :height: 21 .. _RefImage_Object_40.svg: and .. image:: images/Object_41.svg :width: 19 :height: 21 .. _RefImage_Object_41.svg: either: .. image:: images/Object_42.svg :width: 19 :height: 21 .. _RefImage_Object_42.svg: and .. image:: images/Object_43.svg :width: 19 :height: 21 .. _RefImage_Object_43.svg: Therefore: .. image:: images/Object_44.svg :width: 19 :height: 21 .. _RefImage_Object_44.svg: So when we reach the criterion .. image:: images/Object_45.svg :width: 19 :height: 21 .. _RefImage_Object_45.svg: , we have: .. image:: images/Object_46.svg :width: 19 :height: 21 .. _RefImage_Object_46.svg: That is to say, the transition between the elastic and perfectly plastic states occurs for an axial deformation equal to: .. image:: images/Object_47.svg :width: 19 :height: 21 .. _RefImage_Object_47.svg: The corresponding stress state is noted: .. image:: images/Object_48.svg :width: 19 :height: 21 .. _RefImage_Object_48.svg: and .. image:: images/Object_49.svg :width: 19 :height: 21 .. _RefImage_Object_49.svg: **Plastic phase:** We note .. image:: images/Object_50.svg :width: 19 :height: 21 .. _RefImage_Object_50.svg: The deviator of the inverse of the tensor s In general, we have the following quantities: .. image:: images/Object_51.svg :width: 19 :height: 21 .. _RefImage_Object_51.svg: .. image:: images/Object_52.svg :width: 19 :height: 21 .. _RefImage_Object_52.svg: .. image:: images/Object_53.svg :width: 19 :height: 21 .. _RefImage_Object_53.svg: .. image:: images/Object_54.svg :width: 19 :height: 21 .. _RefImage_Object_54.svg: .. image:: images/Object_55.svg :width: 19 :height: 21 .. _RefImage_Object_55.svg: .. image:: images/Object_56.svg :width: 19 :height: 21 .. _RefImage_Object_56.svg: either: .. image:: images/Object_57.svg :width: 19 :height: 21 .. _RefImage_Object_57.svg: and .. image:: images/Object_58.svg :width: 19 :height: 21 .. _RefImage_Object_58.svg: Therefore: .. image:: images/Object_59.svg :width: 19 :height: 21 .. _RefImage_Object_59.svg: From this we deduce: .. image:: images/Object_60.svg :width: 19 :height: 21 .. _RefImage_Object_60.svg: and .. image:: images/Object_61.svg :width: 19 :height: 21 .. _RefImage_Object_61.svg: in addition: .. image:: images/Object_62.svg :width: 19 :height: 21 .. _RefImage_Object_62.svg: and .. image:: images/Object_63.svg :width: 19 :height: 21 .. _RefImage_Object_63.svg: As we have: .. image:: images/Object_64.svg :width: 19 :height: 21 .. _RefImage_Object_64.svg: So the tensor .. image:: images/Object_65.svg :width: 19 :height: 21 .. _RefImage_Object_65.svg: is written: .. image:: images/Object_66.svg :width: 19 :height: 21 .. _RefImage_Object_66.svg: and .. image:: images/Object_67.svg :width: 19 :height: 21 .. _RefImage_Object_67.svg: He then comes to .. image:: images/Object_68.svg :width: 19 :height: 21 .. _RefImage_Object_68.svg: : .. image:: images/Object_69.svg :width: 19 :height: 21 .. _RefImage_Object_69.svg: .. image:: images/Object_70.svg :width: 19 :height: 21 .. _RefImage_Object_70.svg: According to the elastic law, we also have: .. image:: images/Object_71.svg :width: 19 :height: 21 .. _RefImage_Object_71.svg: and .. image:: images/Object_72.svg :width: 19 :height: 21 .. _RefImage_Object_72.svg: where: .. image:: images/Object_73.svg :width: 19 :height: 21 .. _RefImage_Object_73.svg: .. image:: images/Object_74.svg :width: 19 :height: 21 .. _RefImage_Object_74.svg: and with: .. image:: images/Object_75.svg :width: 19 :height: 21 .. _RefImage_Object_75.svg: and .. image:: images/Object_76.svg :width: 19 :height: 21 .. _RefImage_Object_76.svg: or, according to the above, we have for .. image:: images/Object_77.svg :width: 19 :height: 21 .. _RefImage_Object_77.svg: : .. image:: images/Object_78.svg :width: 19 :height: 21 .. _RefImage_Object_78.svg: And for .. image:: images/Object_79.svg :width: 19 :height: 21 .. _RefImage_Object_79.svg: : .. image:: images/Object_80.svg :width: 19 :height: 21 .. _RefImage_Object_80.svg: From this we deduce that the deviatory load function is written as: .. image:: images/Object_81.svg :width: 19 :height: 21 .. _RefImage_Object_81.svg: Taking into account the fact that .. image:: images/Object_82.svg :width: 19 :height: 21 .. _RefImage_Object_82.svg: , we then find for the plastic multiplier: .. image:: images/Object_83.svg :width: 19 :height: 21 .. _RefImage_Object_83.svg: What happens with the formulas of .. image:: images/Object_84.svg :width: 19 :height: 21 .. _RefImage_Object_84.svg: and .. image:: images/Object_85.svg :width: 19 :height: 21 .. _RefImage_Object_85.svg: previous ones: .. image:: images/Object_86.svg :width: 19 :height: 21 .. _RefImage_Object_86.svg: The analytical expression of constraints is finally concluded: By posing: .. image:: images/Object_87.svg :width: 19 :height: 21 .. _RefImage_Object_87.svg: We have: .. image:: images/Object_88.svg :width: 19 :height: 21 .. _RefImage_Object_88.svg: .. image:: images/Object_89.svg :width: 19 :height: 21 .. _RefImage_Object_89.svg: Benchmark results ---------------------- Constraints .. image:: images/Object_90.svg :width: 19 :height: 21 .. _RefImage_Object_90.svg: , .. image:: images/Object_91.svg :width: 19 :height: 21 .. _RefImage_Object_91.svg: and .. image:: images/Object_92.svg :width: 19 :height: 21 .. _RefImage_Object_92.svg: at points :math:`A`, :math:`B`, and :math:`C`. Uncertainty about the solution --------------------------- Exact analytics solution for CJS1.