Benchmark solution ===================== Calculation method ----------------- We start from the energy equation [:ref:`éq 3.1.3-1 <éq 3.1.3-1>`] from document [:ref:`R7.01.11 `], which in this case gives: .. image:: images/Object_3.svg :width: 206 :height: 25 .. _RefImage_Object_3.svg: .. _RefEquation 2.1-1: eq 2.1-1 In which .. image:: images/Object_4.svg :width: 206 :height: 25 .. _RefImage_Object_4.svg: denotes the enthalpy of water, .. image:: images/Object_5.svg :width: 206 :height: 25 .. _RefImage_Object_5.svg: its mass flow, .. image:: images/Object_6.svg :width: 206 :height: 25 .. _RefImage_Object_6.svg: the mass intake of water and .. image:: images/Object_7.svg :width: 206 :height: 25 .. _RefImage_Object_7.svg: heat flow. Given the assumptions made, it is easy to see that: .. image:: images/Object_8.svg :width: 206 :height: 25 .. _RefImage_Object_8.svg: .. _RefEquation 2.1-2: Eq 2.1-2 .. image:: images/Object_9.svg :width: 206 :height: 25 .. _RefImage_Object_9.svg: .. _RefEquation 2.1-3: Eq 2.1-3 .. image:: images/Object_10.svg :width: 206 :height: 25 .. _RefImage_Object_10.svg: .. _RefEquation 2.1-4: Eq 2.1-4 .. image:: images/Object_11.svg :width: 206 :height: 25 .. _RefImage_Object_11.svg: .. _RefEquation 2.1-5: Eq 2.1-5 .. image:: images/Object_12.svg :width: 206 :height: 25 .. _RefImage_Object_12.svg: is the thermal diffusion coefficient, .. image:: images/Object_13.svg :width: 206 :height: 25 .. _RefImage_Object_13.svg: is the hydraulic diffusion coefficient, .. image:: images/Object_14.svg :width: 206 :height: 25 .. _RefImage_Object_14.svg: intrinsic permeability, .. image:: images/Object_15.svg :width: 206 :height: 25 .. _RefImage_Object_15.svg: , .. image:: images/Object_16.svg :width: 206 :height: 25 .. _RefImage_Object_16.svg: , .. image:: images/Object_17.svg :width: 206 :height: 25 .. _RefImage_Object_17.svg: are respectively the density, the viscosity and the calorific heat at constant pressure of water. By reporting [:ref:`éq 2.1-2 <éq 2.1-2>`], [:ref:`éq 2.1-3 <éq 2.1-3>`], [:ref:`éq 2.1-4 <éq 2.1-4>`], and [:ref:`éq 2.1-5 <éq 2.1-5>`] in [:ref:`éq 2.1-1 <éq 2.1-1>`] we find: .. image:: images/Object_18.svg :width: 206 :height: 25 .. _RefImage_Object_18.svg: .. _RefEquation 2.1-6: eq 2.1-6 We ask: .. image:: images/10000370000069D500002EB71819ED95FDC94958.svg :width: 206 :height: 25 .. _RefImage_10000370000069D500002EB71819ED95FDC94958.svg: and .. image:: images/Object_19.svg :width: 206 :height: 25 .. _RefImage_Object_19.svg: We get .. image:: images/Object_20.svg :width: 206 :height: 25 .. _RefImage_Object_20.svg: .. _RefEquation 2.1-7: eq 2.1-7 Benchmark results ---------------------- In order to obtain the steady state more quickly, coefficients such as: .. image:: images/Object_21.svg :width: 206 :height: 25 .. _RefImage_Object_21.svg: The solution for [:ref:`éq 2.1-7 <éq 2.1-7>`] is then: .. image:: images/Object_22.svg :width: 206 :height: 25 .. _RefImage_Object_22.svg: