Reference problem ===================== Geometry --------- We are using a one-dimensional problem in Cartesian coordinates, corresponding to a hypothesis of plane deformations in the direction :math:`y`. The "structure" considered is finally a segment of length :math:`L\mathrm{=}20m`. Material properties ---------------------- .. csv-table:: "Liquid water", "Density :math:`({\mathrm{kg.m}}^{-3})` Specific heat at constant pressure :math:`({\mathrm{J.K}}^{-1})` Dynamic viscosity of liquid water :math:`(\mathrm{Pa.s})` Coefficient of thermal expansion of liquid :math:`({K}^{-1})` Compressibility :math:`({\mathit{Pa}}^{\mathrm{-}1})` "," :math:`{10}^{3}` :math:`4180` :math:`0.001` :math:`1.{10}^{-4}` :math:`{K}_{e}=5.{10}^{-10}`" "Solid", "Drained Young's Module :math:`E(\mathrm{Pa})` Poisson's ratio Coefficient of thermal expansion of solid :math:`({K}^{-1})` "," :math:`2.166{10}^{9}` :math:`0.3` :math:`{10}^{-5}`" "Initial state", "Porosity Temperature :math:`(K)` Liquid pressure :math:`(\mathrm{Pa})` Vapor pressure :math:`(\mathrm{Pa})` "," :math:`0.14` :math:`293` :math:`0` :math:`2320`" "Homogenized coefficients", "Homogenized density :math:`({\mathrm{kg.m}}^{-3})` Biot coefficient Intrinsic permeability :math:`({m}^{2})` Thermal conductivity :math:`({\mathrm{W.K}}^{-1}{m}^{-1})` Constant stress heat :math:`({\mathrm{J.K}}^{-1})` "," :math:`2410` :math:`1` :math:`{K}_{\text{int}}={10}^{-19}` :math:`{\lambda }_{T}=1.8` 565." Boundary conditions and loads ------------------------------------- A vertical bar in vertical positioning is heated: .. image:: images/100002000000018900000220F00BB0564DA8722D.png :width: 2.1362in :height: 2.4661in .. _RefImage_100002000000018900000220F00BB0564DA8722D.png: With :math:`{\lambda }_{T}\frac{\mathrm{\partial }T}{\mathrm{\partial }x}\mathrm{=}{\Psi }_{T}` independent of time :math:`t` Which corresponds to: * In :math:`x\mathrm{=}0`: zero displacement, zero hydraulic flow, imposed heat flow :math:`{\Psi }_{T}=100{\mathrm{W.m}}^{-2}` constant in time * In :math:`x\mathrm{=}L`: zero displacement, zero hydraulic flow, zero heat flow. Initial conditions -------------------- :math:`u(x)\mathrm{=}P(x)\mathrm{=}0` :math:`T(x)={T}_{0}=20°C` everywhere.