Benchmark solution ===================== Calculation method ------------------ The total deformations in steel and in concrete are: :math:`{\epsilon }_{a}^{t}\mathrm{=}{\epsilon }_{a}^{m}+{\epsilon }_{a}^{\mathit{th}}` and :math:`{\epsilon }_{b}^{t}\mathrm{=}{\epsilon }_{b}^{m}` with :math:`{\epsilon }_{a}^{\mathit{th}}\mathrm{=}\alpha \Delta T` Let :math:`\epsilon` be the deformation of the middle plane of the plate and :math:`\chi` the curvature of the plate, the two unknowns to be found. By respecting the kinematics (the sections remain flat), the steel being perfectly bonded to the concrete, we have: :math:`{\epsilon }_{a}^{t}\mathrm{=}\epsilon \mathrm{-}e\chi` and :math:`{\epsilon }_{b}^{t}\mathrm{=}\epsilon \mathrm{-}y\chi` The normal force imposed on the plate is zero: :math:`N\mathrm{=}{N}_{a}+{N}_{b}\mathrm{=}{E}_{a}{S}_{a}{\epsilon }_{a}^{m}+{E}_{b}\mathrm{\int }{\epsilon }_{b}^{m}\text{}\mathrm{=}{E}_{a}{S}_{a}(\epsilon \mathrm{-}e\chi \mathrm{-}{\epsilon }_{a}^{\mathit{th}})+{E}_{b}{S}_{b}\epsilon \mathrm{=}0` Likewise, the bending moment imposed on the plate is zero: :math:`M={M}_{a}+{M}_{b}=e{E}_{a}{S}_{a}{\epsilon }_{a}^{m}+{E}_{b}\int y{\epsilon }_{b}^{m}\text{}={E}_{a}{S}_{a}(e\epsilon -{e}^{2}\chi -e{\epsilon }_{a}^{\mathrm{th}})+{E}_{b}{I}_{b}\chi =0` We thus obtain two equations to determine the two unknowns: :math:`\begin{array}{c}({E}_{a}{S}_{a}+{E}_{b}{S}_{b})\epsilon \mathrm{-}{E}_{a}{S}_{a}e\chi \mathrm{=}{E}_{a}{S}_{a}{\epsilon }_{a}^{\mathit{th}}\\ {E}_{a}{S}_{a}e\epsilon +({E}_{b}{I}_{b}\mathrm{-}{E}_{a}{S}_{a}{e}^{2})\chi \mathrm{=}{E}_{a}{S}_{a}e{\epsilon }_{a}^{\mathit{th}}\end{array}` We get: :math:`\epsilon \mathrm{=}\frac{\alpha \Delta T}{A}` and :math:`\chi \mathrm{=}\frac{\mathrm{-}\alpha \Delta T}{B}` with: :math:`A\mathrm{=}1+\frac{{E}_{b}{S}_{b}}{{E}_{a}{S}_{a}}+\frac{{S}_{b}{e}^{2}}{{I}_{b}}` and :math:`B\mathrm{=}e+(\frac{1}{{E}_{a}{S}_{a}}+\frac{1}{{E}_{b}{S}_{b}})+\frac{{E}_{b}{I}_{b}}{e}` From these values we can calculate: * the elongation of the plate: :math:`\Delta L\mathrm{=}\epsilon L` * the rotation of the plate: :math:`{R}_{y}\mathrm{=}\chi L` * the arrow at the end of the plate: :math:`f\mathrm{=}\mathrm{-}\chi \frac{{L}^{2}}{2}` or in the middle of the plate :math:`f\mathrm{=}\mathrm{-}\chi \frac{{L}^{2}}{8}` * the normal stress in steel: :math:`{\sigma }_{a}\mathrm{=}{E}_{a}(\epsilon \mathrm{-}e\chi \mathrm{-}{\epsilon }_{a}^{\mathit{th}})` * the normal force in concrete: :math:`{N}_{b}\mathrm{=}{E}_{b}{S}_{b}\epsilon` Reference quantities and results ----------------------------------- We calculate the elongation and the deflection of the plate (displacement :math:`{U}_{x}` and :math:`{U}_{z}` of a node of the edge :math:`C` of the plate), the rotation (:math:`{R}_{y}` constant over the length), the normal force in the reinforcements, the normal force in the reinforcements, the normal force in the concrete :math:`{N}_{b}`. Uncertainty about the solution ---------------------------- Exact solution.