Reference problem ===================== Geometry --------- :math:`y` .. image:: images/Shape1.gif .. _RefSchema_Shape1.gif: :math:`{u}^{\mathit{meca}}` :math:`x` **Figure 1.1-a: Geometry and reference problem load** It is a cylinder with height :math:`H=1000\mathit{mm}`, and radius :math:`R=1000\mathit{mm}`. The square in bold corresponds to the axisymmetric modeling used in §3. Material properties ----------------------- Material properties are described by the following parameters: **For thermo-metallic calculation** * (:math:`\mathrm{16MND5}` steel) * :math:`\rho {C}_{p}={5.26E}^{-3}{\mathit{J.mm}}^{-3.}°{C}^{-1}` * :math:`\lambda ={33.5E}^{-3}{\mathit{W.mm}}^{-1.}°{C}^{-1}` **Coefficient for metallurgy:** * :math:`\mathrm{TRC}` "standard" * :math:`\mathrm{AR3}=830°C`, :math:`\mathrm{alpha}=-0.0306` * :math:`\mathrm{MS0}=400°C`, :math:`\mathrm{AC1}=724°C`, :math:`\mathrm{AC3}=846°C` * :math:`{\tau }_{1}=0.034`, :math:`{\tau }_{3}=0.034` **For thermo-metallo-mechanical calculation** * Young's module: :math:`E=200000\mathit{MPa}` * Poisson's ratio: :math:`\nu =0.3` **Definition of elastic characteristics, expansion and elastic limits for modeling a material undergoing metallurgical transformations:** * :math:`{T}_{\mathrm{ref}}=20°C` * Average thermal expansion coefficient for cold phases: :math:`{\alpha }_{f}(T)=10{E}^{-6}` * Average thermal expansion coefficient of the hot phase: :math:`{\alpha }_{\gamma }(T)=10{E}^{-5}` * Expansion coefficient definition temperature: :math:`{T}_{\gamma }=20°C` * Choice of the reference metallurgical phase: cold * Deformation of the non-reference phase with respect to the reference phase at temperature :math:`{T}_{\mathrm{ref}}`: :math:`\Delta \varepsilon =1{E}^{-2}` * Elastic limit of the cold phase 1 for plastic behavior: :math:`\text{F\_sigm\_f}(T)=100\mathit{MPa}` * Elastic limit of the cold phase 2 for plastic behavior: :math:`\text{F\_sigm\_f}(T)=100\mathit{MPa}` * Elastic limit of the cold phase 3 for plastic behavior: :math:`\text{F\_sigm\_f}(T)=100\mathit{MPa}` * Elastic limit of the cold phase 4 for plastic behavior: :math:`\text{F\_sigm\_f}(T)=100\mathit{MPa}` * Elastic limit of the hot phase for plastic behavior: :math:`\text{F\_sigm\_f}(T)=100\mathit{MPa}` * Function used for the mixing law on the elastic limit of multiphase material for plastic behavior: .. image:: images/10000201000001B90000018DC845C39D2B792D23.png :width: 3.2854in :height: 2.9528in .. _RefImage_10000201000001B90000018DC845C39D2B792D23.png: **Figure 1.2-a: Law of Mixing** **Definition of the 5 traction curves used in the modeling of non-linear isotropic work hardening of a material undergoing metallurgical phase changes:** Isotropic work hardening curve :math:`R` as a function of the cumulative plastic deformation :math:`p` for the cold phase 1 * to :math:`20°C`: .. csv-table:: ":math:`p` "," :math:`\sigma (\mathit{Mpa})`" "0.99", "250" To :math:`120°C`: .. csv-table:: ":math:`p` "," :math:`\sigma (\mathit{MPa})`" "0.0105", "90" "0.032", "160" "0.064", "220" "0.1125", "250" "0.1815", "270" Isotropic work hardening curve :math:`R` as a function of the cumulative plastic deformation :math:`p` for cold phase 2: Same as previous Isotropic work hardening curve :math:`R` as a function of the cumulative plastic deformation :math:`p` for cold phase 3: Same as previous Isotropic work hardening curve :math:`R` as a function of the cumulative plastic deformation :math:`p` for cold phase 4: Same as previous Isotropic work hardening curve :math:`R` as a function of the cumulative plastic deformation :math:`p` for the hot phase: Same as previous Boundary conditions and loads ------------------------------------- The base of the cylinder is stuck following :math:`y`: :math:`\mathrm{Uy}=0` on the base of the cylinder. A :math:`{u}^{\mathit{meca}}=30\mathit{mm}` displacement is imposed on the top of the cylinder. The temperature is imposed all over the cylinder, such that: .. image:: images/Object_167.png :width: 4.5102in :height: 2.2366in .. _RefSchema_Object_167.png: Initial conditions -------------------- Initial temperature: :math:`T(x,y\mathrm{,0})=20°C` The following variables are initialized: :math:`{Z}_{f}(x,y\mathrm{,0})=0.7` :math:`{Z}_{p}(x,y\mathrm{,0})=0.0` :math:`{Z}_{b}(x,y\mathrm{,0})=0.3` :math:`{Z}_{m}(x,y\mathrm{,0})=0.0` :math:`d(x,y\mathrm{,0})=0.0`