Benchmark solution ===================== Calculation method used for the reference solution [:ref:`bib1 `] ----------------------------------------------------------------------------- Isotropic work hardening: analytical ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :math:`t=\mathrm{1s}` **(** :math:`T=0°C` **)**: .. image:: images/Object_5.svg :width: 154 :height: 50 .. _RefImage_Object_5.svg: with .. image:: images/Object_6.svg :width: 154 :height: 50 .. _RefImage_Object_6.svg: either .. image:: images/Object_7.svg :width: 154 :height: 50 .. _RefImage_Object_7.svg: **Heating:** Maximum plastic deformation at :math:`t=\mathrm{1.45222s}` (:math:`T=45.222°C`): .. image:: images/Object_8.svg :width: 154 :height: 50 .. _RefImage_Object_8.svg: either .. image:: images/Object_9.svg :width: 154 :height: 50 .. _RefImage_Object_9.svg: Then: the plastic deformation no longer evolves. Linear kinematic work hardening: analytics ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :math:`t=\mathrm{1s}` **(** :math:`T=0°C` **)**: .. image:: images/Object_10.svg :width: 154 :height: 50 .. _RefImage_Object_10.svg: **Heating:** Constant plastic deformation up to :math:`t=356/316=\mathrm{1.12658s}` (:math:`T=12.658°C`): Then the plastic deformation decreases to reach :math:`t=\mathrm{2s}`: .. image:: images/Object_11.svg :width: 154 :height: 50 .. _RefImage_Object_11.svg: Nonlinear kinematic hardening I: analytical ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :math:`t=\mathrm{1s}` **(** :math:`T=0°C` **)**: .. image:: images/Object_12.svg :width: 154 :height: 50 .. _RefImage_Object_12.svg: with :math:`A=\frac{C}{D}=100` either .. image:: images/Object_14.svg :width: 154 :height: 50 .. _RefImage_Object_14.svg: **Heating:** Maximum plastic deformation at :math:`t=\mathrm{1.26011s}` (:math:`T=26.011°C`): .. image:: images/Object_15.svg :width: 154 :height: 50 .. _RefImage_Object_15.svg: either .. image:: images/Object_16.svg :width: 154 :height: 50 .. _RefImage_Object_16.svg: Plastic deformation no longer evolves until :math:`{t}_{1}=\mathrm{1.98332s}` (:math:`{T}_{1}=98.332°C`) where the other end of the elasticity domain is encountered. Then: the plastic deformation decreases to reach :math:`t=\mathrm{2s}`: .. image:: images/Object_17.svg :width: 154 :height: 50 .. _RefImage_Object_17.svg: with .. image:: images/Object_18.svg :width: 154 :height: 50 .. _RefImage_Object_18.svg: either .. image:: images/Object_19.svg :width: 154 :height: 50 .. _RefImage_Object_19.svg: Nonlinear kinematic hardening II ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Comparison to the reference solution proposed on day :math:`{\Phi }^{2}\mathrm{As}`. (numerical result obtained with 10 time steps), and comparison to the results obtained with *Code_Aster* with very fine time discretization .. csv-table:: "Plastic deformation :math:`\mathrm{YY}` ", "Fine Aster calculation: 100 steps up to :math:`\mathrm{1.26s}`, 100 steps between 1.98 and 2s", "Reference :math:`{\Phi }^{2}\mathrm{As}`: Result for "10 steps" ":math:`t=\mathrm{1s}` ", "2.1072 10—03", "2.1072 10—03" ":math:`\mathrm{1.26s}