C modeling ============== Characteristics of modeling ----------------------------------- Behavior :math:`\mathrm{C3}`: non-linear kinematic work hardening (:math:`I`) in :math:`\mathrm{3D}`. It is modelled in two ways: * or using the VMIS_CIN1_CHAB behavior. All you have to do is then take: :math:`{R}_{0}={R}_{I}=\mathrm{SIGY}`, :math:`b=0`, :math:`{C}_{I}=C(T)=(100+\mathrm{1.7.T})(50+\mathrm{2.T})`, :math:`{G}_{0}=50` * or using behavior VMIS_CIN2_CHAB, by choosing the parameters in such a way that the two kinematic variables are identical: All you have to do is then take: :math:`{R}_{0}={R}_{I}=\mathrm{SIGY}`, :math:`b=0`, :math:`{\mathrm{C1}}_{I}={\mathrm{C2}}_{I}=C(T)/2`, :math:`{\mathrm{G1}}_{0}={\mathrm{G2}}_{0}=50` Temporal discretization: 20 time steps between :math:`t=\mathrm{0s}` and :math:`t=\mathrm{1s}` and 60 time steps between :math:`t=\mathrm{1s}` and :math:`t=\mathrm{2s}`. Characteristics of the mesh ---------------------------- The mesh includes a HEXA8 mesh. Tested sizes and results ------------------------------ Behavior VMIS_CIN1_CHAB: .. csv-table:: "**Instant (s)**", "**Plastic deformation by** :math:`Y` ", "**Reference**", "**Aster**", "**% difference**" "1"," :math:`\mathrm{EPYY}` ", "2.1072 10—03", "2.113 10—03", "2.1072 10—03", "0.27" "1.26"," :math:`\mathrm{EPYY}` ", "4.0729 10—03", "4.0875 10—03", "4.0729 10—03", "0.36" "1.98"," :math:`\mathrm{EPYY}` ", "4.0729 10—03", "4.0875 10—03", "0.36" "2"," :math:`\mathrm{EPYY}` ", "4.0372 10—03", "3.978 10—03", "4.0372 10—03", "1.46" Behavior VMIS_CIN2_CHAB: .. csv-table:: "**Instant (s)**", "**Plastic deformation by** :math:`Y` ", "**Reference**", "**Aster**", "**% difference**" "1"," :math:`\mathrm{EPYY}` ", "2.1072 10—03", "2.113 10—03", "2.1072 10—03", "0.27" "1.26"," :math:`\mathrm{EPYY}` ", "4.0729 10—03", "4.0875 10—03", "4.0729 10—03", "0.36" "1.98"," :math:`\mathrm{EPYY}` ", "4.0729 10—03", "4.0875 10—03", "0.36" "2"," :math:`\mathrm{EPYY}` ", "4.0372 10—03", "3.978 10—03", "4.0372 10—03", "1.46" note -------- The difference with the reference solution comes from temporal discretization. By refining further, the solution is closer to the analytical solution. A compromise was chosen between reasonable temporal discretization in terms of calculation time and nevertheless fairly accurate.