1. Reference problem#
1.1. Geometry#
Volume element materialized by a cube with a unit side:
1.2. Material properties#
\(E={2.10}^{5}\mathrm{MPa}\), \(\nu =0.3\), \(\alpha ={10}^{-5}°{C}^{-1}\)
The material is elastoplastic with different types of behavior:
\(\mathrm{C1}\): Isotropic hardening: the traction curve is of the form:
\(\sigma ({\varepsilon }^{P},T)={\sigma }_{y}(T)+Q(T)(1-{e}^{-b(T){\varepsilon }^{P}})\)
\(\mathrm{SIGY}=200.-\mathrm{1.7.T}\) |
(in \(\mathrm{MPa}\)) |
\(Q(T)=100.+\mathrm{1.7.T}\) |
(in \(\mathrm{MPa}\)) |
\(b(T)=50.+\mathrm{2.T}\) |
\(\mathrm{C2}\): Linear kinematic hardening:
\(\sigma ({\varepsilon }^{P},T)=\pm {\sigma }_{y}(T)+C(T){\varepsilon }^{P}\)
\(\mathrm{SIGY}=200.-\mathrm{1.7.T}\) |
(in \(\mathrm{MPa}\)) |
\(C(T)=1000+\mathrm{2990.T}\) |
(in \(\mathrm{MPa}\)) |
\(\mathrm{C3}\): Nonlinear kinematic hardening (\(I\)):
\(\mathrm{SIGY}=200.-\mathrm{1.7.T}\) |
(in \(\mathrm{MPa}\)) |
\(C(T)=(100+\mathrm{1.7.T})(50+\mathrm{2.T})\) |
(in \(\mathrm{MPa}\)) |
\(D(T)=50\) |
\(\mathrm{C4}\): Nonlinear kinematic hardening (\(\mathrm{II}\)):
same characteristics as for behavior \(\mathrm{C3}\), except \(D(T)=50+\mathrm{2T}\)
1.3. Boundary conditions and loads#
Such that the state of stress and deformation are uniform in the volume element:
Point \(B\) stuck in \(x\), \(y\) and \(z\). Point \(A\) stuck in \(z\), \(\mathrm{DY}=0\) on the side \(\mathrm{ABFE}\)
Force distributed on the face \(\mathrm{CDHG}\): \(\mathrm{Fy}\)
Uniform temperature \(T(t)\) on the cube. The reference temperature is \(0°C\).
\(\mathrm{Fy}\) and \(T\) vary over time as follows:
instant \(t\) |
0 |
1 |
2 |
\(\mathrm{Fy}(t)\) |
0 |
|
|
\(T(t)\) |
0 |
0 |
|