Reference problem ===================== It is a cylindrical creep bar. Geometry --------- .. image:: images/Shape1.gif .. _RefSchema_Shape1.gif: **Figure 1.1-a: Geometry and reference problem load** It is a cylinder with height :math:`H\mathrm{=}1.0m`, and radius :math:`R\mathrm{=}1.0m`. The square in bold corresponds to the axisymmetric modeling used in [:ref:`§3 <§3>`]. Material properties ----------------------- Material properties are described by the following parameters: **For thermo-metallic calculation** (Zircaloy) :math:`\rho {C}_{p}\mathrm{=}2000000{\mathit{J.m}}^{\mathrm{-}3.}°{C}^{\mathrm{-}1}` :math:`\lambda \mathrm{=}9999.9{\mathit{W.m}}^{\mathrm{-}1.}°{C}^{\mathrm{-}1}` Coefficient for metallurgy: :math:`\mathit{teqd}\mathrm{=}809°C`, :math:`K\mathrm{=}1.135{E}^{\mathrm{-}2}`, :math:`n\mathrm{=}2.187` :math:`\mathit{t1c}\mathrm{=}831°C`, :math:`\mathit{t2c}\mathrm{=}0.`, :math:`\mathit{qsr}\mathrm{=}14614`, :math:`\mathit{Ac}\mathrm{=}1.58E\mathrm{-}4` :math:`m\mathrm{=}4.7`, :math:`\mathit{t1r}\mathrm{=}\mathrm{949,1}°C`, :math:`\mathit{t2e}\mathrm{=}0.`, :math:`\mathit{Ar}\mathrm{=}\mathrm{-}5.725`, :math:`\mathit{Br}\mathrm{=}0.05` **For thermo-metallo-mechanical calculation** * Young's module: :math:`E\mathrm{=}200000\mathit{Pa}` * Poisson's ratio: :math:`\nu \mathrm{=}0.3` **Definition of elastic characteristics, expansion and elastic limits for the modeling of a material undergoing metallurgical transformations:** * :math:`{T}_{\mathit{ref}}\mathrm{=}800°C` * Average thermal expansion coefficient for cold phases: :math:`{\alpha }_{f}(T)\mathrm{=}0` * Average thermal expansion coefficient of the hot phase: :math:`{\alpha }_{\gamma }(T)\mathrm{=}0` * Expansion coefficient definition temperature: :math:`{T}_{\gamma }\mathrm{=}800°C` * Choice of the reference metallurgical phase: hot * Deformation of the non-reference phase with respect to the reference phase at temperature :math:`{T}_{\mathit{ref}}`: :math:`\Delta \varepsilon \mathrm{=}0` * Cold phase elasticity limit 1 for viscous behavior: :math:`{F}_{{\mathit{sigm}}_{f}}(T)\mathrm{=}0` * Elastic limit of the cold phase 2 for viscous behavior: :math:`{F}_{{\mathit{sigm}}_{f}}(T)\mathrm{=}0` * Elastic limit of the hot phase for viscous behavior: see [:ref:`Figure 1.2-a
`] .. image:: images/10000201000001B50000018D6EF9DA5F2D5BF677.png :width: 3.2102in :height: 2.9146in .. _RefImage_10000201000001B50000018D6EF9DA5F2D5BF677.png: **Figure 1.2.-a: Elastic limit of the hot phase for viscous behavior** 1. Function used for the mixing law on the elastic limit of multiphase material for viscous behavior: :math:`f` .. image:: images/10000201000001B90000018DEF50D3C942FF1EAE.png :width: 3.1126in :height: 2.798in .. _RefImage_10000201000001B90000018DEF50D3C942FF1EAE.png: **Figure 1.2-b: Law of Mixing** Definition of the work hardening modules used in modeling the phenomenon of linear isotropic work hardening of a material undergoing metallurgical phase changes: 1. Slope of the traction curve for cold phase 1 .. image:: images/10000201000002C20000018D39182F1A56C4E9E9.png :width: 3.811in :height: 2.6035in .. _RefImage_10000201000002C20000018D39182F1A56C4E9E9.png: **Figure 1.2-c: Tensile curve for cold phase 1** * Slope of the traction curve for cold phase 2: :math:`f(T)\mathrm{=}0` * Slope of the traction curve for the hot phase: :math:`f(T)\mathrm{=}0` **Definition of the viscous parameters of the law of viscoplastic behavior taking into account metallurgy:** 1. Parameter :math:`\eta` of the viscoplastic flow law, for cold phase 1 .. image:: images/10000201000001C50000018D824885AB32BD330D.png :width: 3.7272in :height: 3.2638in .. _RefImage_10000201000001C50000018D824885AB32BD330D.png: **Figure 1.2-d: Parameter** :math:`\eta` **of the viscoplastic flow law, for the cold phase 1** 1. Parameter :math:`\eta` of the viscoplastic flow law, for cold phase 2 .. image:: images/10000201000001CB0000018DC7E823325EFA0793.png :width: 3.8252in :height: 3.3028in .. _RefImage_10000201000001CB0000018DC7E823325EFA0793.png: **Figure 1.2-e: Parameter** :math:`\eta` **of the viscoplastic flow law, for the cold phase 2** * Parameter :math:`\eta` of the viscoplastic flow law, for the hot phase: :math:`f(T)\mathrm{=}0` * Parameter :math:`n` of the viscoplastic flow law, for cold phase 1: :math:`f(T)\mathrm{=}5.76` * Parameter :math:`n` of the viscoplastic flow law, for cold phase 2: :math:`f(T)\mathrm{=}2.94` * Parameter :math:`n` of the viscoplastic flow law, for the hot phase: :math:`f(T)\mathrm{=}1.0` * Parameter :math:`C` relating to the restoration of viscous work hardening, for cold phase 1: :math:`f(T)\mathrm{=}13.70539827` * Parameter :math:`C` relating to the restoration of viscous work hardening, for cold phase 2: :math:`f(T)\mathrm{=}0` * Parameter :math:`C` relating to the restoration of viscous work hardening, for the hot phase: :math:`f(T)\mathrm{=}0` * Parameter :math:`m` relating to the restoration of viscous work hardening, for the cold phase1: :math:`f(T)\mathrm{=}5.76` * Parameter :math:`m` relating to the restoration of viscous work hardening, for the cold phase2: :math:`f(T)\mathrm{=}1.0` * Parameter :math:`m` relating to the restoration of viscous work hardening, for the hot phase: :math:`f(T)\mathrm{=}1.0` Boundary conditions and loads ------------------------------------- The base of the cylinder is stuck following :math:`y`: :math:`\mathit{Uy}\mathrm{=}0` on the base of the cylinder A :math:`F\mathrm{=}25N` traction force is imposed on the top of the cylinder The temperature is imposed all over the cylinder for :math:`t\mathrm{=}\mathrm{120s}`. :math:`T(x,y\mathrm{,120})\mathrm{=}800°C` Initial conditions -------------------- The following variables are initialized: * :math:`T(x,y\mathrm{,0})\mathrm{=}800°C` * :math:`\mathit{V1}(x,y\mathrm{,0})\mathrm{=}1.0` * :math:`\mathit{V2}(x,y\mathrm{,0})\mathrm{=}0.0` * :math:`\mathit{V3}(x,y\mathrm{,0})\mathrm{=}20.` * :math:`\mathit{V4}(x,y\mathrm{,0})\mathrm{=}0.` :math:`\mathit{V1}` *: proportion of the cold phase* :math:`\alpha` :math:`\mathit{V2}` *: proportion of the cold phase* :math:`\alpha` *, mixed with the phase* :math:`\beta` :math:`\mathit{V3}` *: node temperatures* :math:`\mathit{V4}` *: time corresponding to the temperature at which the start or end of the equilibrium transformation*