Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- We are looking for the :math:`U` displacement field in the form: .. image:: images/Object_6.svg :width: 132 :height: 76 .. _RefImage_Object_6.svg: The transformation gradient, the deformation and its mechanical part are then: .. image:: images/Object_7.svg :width: 132 :height: 76 .. _RefImage_Object_7.svg: with: .. image:: images/Object_8.svg :width: 132 :height: 76 .. _RefImage_Object_8.svg: **Note:** :math:`{({E}^{m})}_{\text{eq}}\mathrm{=}\mathrm{\mid }a\mathrm{-}b\mathrm{\mid }\mathrm{=}a\mathrm{-}b` (it is assumed that :math:`a>b`) The behavioral relationship is written as: .. image:: images/Object_10.svg :width: 132 :height: 76 .. _RefImage_Object_10.svg: with: .. image:: images/Object_11.svg :width: 132 :height: 76 .. _RefImage_Object_11.svg: To determine .. image:: images/Object_12.svg :width: 132 :height: 76 .. _RefImage_Object_12.svg: taking into account linear work hardening, the following are introduced: * the shear modulus: .. image:: images/Object_13.svg :width: 132 :height: 76 .. _RefImage_Object_13.svg: * the work hardening module: .. image:: images/Object_14.svg :width: 132 :height: 76 .. _RefImage_Object_14.svg: , The "internal pseudo-variable" .. image:: images/Object_15.svg :width: 132 :height: 76 .. _RefImage_Object_15.svg: It is then worth: .. image:: images/Object_16.svg :width: 132 :height: 76 .. _RefImage_Object_16.svg: Finally, .. image:: images/Object_17.svg :width: 132 :height: 76 .. _RefImage_Object_17.svg: is written: .. image:: images/Object_18.svg :width: 132 :height: 76 .. _RefImage_Object_18.svg: Taking into account boundary conditions: .. image:: images/Object_19.svg :width: 132 :height: 76 .. _RefImage_Object_19.svg: The system to be solved is written as: .. image:: images/Object_20.svg :width: 132 :height: 76 .. _RefImage_Object_20.svg: It is also written: .. image:: images/Object_21.svg :width: 132 :height: 76 .. _RefImage_Object_21.svg: A .. image:: images/Object_22.svg :width: 132 :height: 76 .. _RefImage_Object_22.svg: fixed, so it is a non-linear system in .. image:: images/Object_23.svg :width: 132 :height: 76 .. _RefImage_Object_23.svg: and .. image:: images/Object_24.svg :width: 132 :height: 76 .. _RefImage_Object_24.svg: , since .. image:: images/Object_25.svg :width: 132 :height: 76 .. _RefImage_Object_25.svg: Is quadratic in .. image:: images/Object_26.svg :width: 132 :height: 76 .. _RefImage_Object_26.svg: and .. image:: images/Object_27.svg :width: 132 :height: 76 .. _RefImage_Object_27.svg: quadratic in .. image:: images/Object_28.svg :width: 132 :height: 76 .. _RefImage_Object_28.svg: . However, one can choose to fix .. image:: images/Object_29.svg :width: 132 :height: 76 .. _RefImage_Object_29.svg: (so .. image:: images/Object_30.svg :width: 132 :height: 76 .. _RefImage_Object_30.svg: ) and solve a linear system by .. image:: images/Object_31.svg :width: 132 :height: 76 .. _RefImage_Object_31.svg: and .. image:: images/Object_32.svg :width: 132 :height: 76 .. _RefImage_Object_32.svg: (from which we deduct .. image:: images/Object_33.svg :width: 132 :height: 76 .. _RefImage_Object_33.svg: and .. image:: images/Object_34.svg :width: 132 :height: 76 .. _RefImage_Object_34.svg: ): * .. image:: images/Object_35.svg :width: 132 :height: 76 .. _RefImage_Object_35.svg: * .. image:: images/Object_36.svg :width: 132 :height: 76 .. _RefImage_Object_36.svg: * .. image:: images/Object_37.svg :width: 132 :height: 76 .. _RefImage_Object_37.svg: * .. image:: images/Object_38.svg :width: 132 :height: 76 .. _RefImage_Object_38.svg: It then remains to express Cauchy's constraint: .. image:: images/Object_39.svg :width: 132 :height: 76 .. _RefImage_Object_39.svg: Or here: .. image:: images/Object_40.svg :width: 132 :height: 76 .. _RefImage_Object_40.svg: As for the force exerted on the face [:ref:`3,4 <3,4>`], due to the hypothesis of dead charges, it is simply written: .. image:: images/Object_41.svg :width: 132 :height: 76 .. _RefImage_Object_41.svg: Benchmark results ---------------------- As reference results, we will adopt displacements, the Cauchy constraint and the force exerted on face :math:`\mathrm{[}\mathrm{3,4}\mathrm{]}` (in :math:`\mathrm{3D}` only): **At time** :math:`t\mathrm{=}\mathrm{2 }s` (:math:`\Delta T\mathrm{=}100°C`, traction .. image:: images/Object_43.svg :width: 132 :height: 76 .. _RefImage_Object_43.svg: ) In fact, we're looking for .. image:: images/Object_44.svg :width: 132 :height: 76 .. _RefImage_Object_44.svg: such as elongation: .. image:: images/Object_45.svg :width: 132 :height: 76 .. _RefImage_Object_45.svg: * :math:`K\mathrm{=}166\mathrm{666 }\mathit{MPa}` :math:`\mu \mathrm{=}\mathrm{76 923 }\mathit{MPa}` :math:`R\text{'}\mathrm{=}\mathrm{2 020 }\mathit{MPa}` * :math:`a\mathrm{=}0.095` * .. image:: images/Object_50.svg :width: 132 :height: 76 .. _RefImage_Object_50.svg: * .. image:: images/Object_51.svg :width: 132 :height: 76 .. _RefImage_Object_51.svg: * .. image:: images/Object_52.svg :width: 132 :height: 76 .. _RefImage_Object_52.svg: * .. image:: images/Object_53.svg :width: 132 :height: 76 .. _RefImage_Object_53.svg: **At time** :math:`t\mathrm{=}\mathrm{3 }s` .. image:: images/Object_54.svg :width: 132 :height: 76 .. _RefImage_Object_54.svg: The bar is back in its original state: .. image:: images/Object_55.svg :width: 132 :height: 76 .. _RefImage_Object_55.svg: Uncertainty about the solution --------------------------- The solution is analytical. Except for rounding errors, it can be considered accurate. Bibliographical references --------------------------- Reference may be made to: 1. E. LORENTZ: A nonlinear hyperelastic behavior relationship - Internal note EDF DER HI-74/95/011/0