Benchmark solution ====================== Solution field shape --------------------------- The solution :math:`\sigma (t)` constraint field is of the form: :math:`\sigma (t)={\sigma }_{o}(t)\left(\begin{array}{ccc}0& 0& 0\\ 0& 0& 0\\ 0& 0& 1\end{array}\right)` The following form of the elastic deformation tensor is deduced from this: :math:`{\epsilon }^{e}(t)=\frac{{\sigma }_{o}(t)}{E}\left(\begin{array}{ccc}-\nu & 0& 0\\ 0& -\nu & 0\\ 0& 0& 1\end{array}\right)` In addition, since :math:`\sigma (t)` keeps the direction constant, we have: :math:`{\epsilon }^{p}(t)={\epsilon }_{o}^{p}(t)\left(\begin{array}{ccc}\frac{-1}{2}& 0& 0\\ 0& \frac{-1}{2}& 0\\ 0& 0& 1\end{array}\right)` where :math:`{\epsilon }^{p}` is the plastic deformation tensor. Calculation method used for the reference solution -------------------------------------------------------- **Notation:** Hereinafter, we will note :math:`{\epsilon }_{\alpha }^{\mathit{eff}}` (resp. :math:`{\epsilon }_{\gamma }^{\mathit{eff}}`) the effective work-hardening variable for the cold phases (resp. for the hot phase). **Before transformation**, thermo-elastic solution for :math:`t<{t}_{1}`. :math:`\{\begin{array}{c}{\epsilon }_{\mathit{zz}}(t)={\epsilon }_{\mathit{zz}}^{e}(t)+{\epsilon }_{\mathit{zz}}^{\mathit{th}}(t)=0\\ {\epsilon }_{\mathit{zz}}^{\mathit{th}}(t)={\alpha }_{\mathit{aust}}(T-{T}^{0})\\ {\sigma }_{\mathit{zz}}(t)=-E{\epsilon }_{\mathit{zz}}^{\mathit{th}}(t)\end{array}` The elastic limit is reached for :math:`t={t}_{1}` such that: :math:`\begin{array}{ccc}{\sigma }_{\mathit{zz}}({t}_{1})=-E{\epsilon }_{\mathit{zz}}^{\mathit{th}}({t}_{1})={\sigma }_{y}^{\mathit{aust}}& \iff & T({t}_{1})-{T}^{0}=\frac{-{\sigma }_{y}^{\mathit{aust}}}{E{\alpha }_{\mathit{aust}}}=-100.°C\\ & \iff & {t}_{1}=\frac{T({t}_{1})-{T}^{0}}{\mu }=20s\end{array}` **Before transformation**, thermo-elasto-plastic solution, :math:`{t}_{1}\le t\le {\tau }_{1}`. :math:`\{\begin{array}{c}{\epsilon }_{\mathit{zz}}(t)={\epsilon }_{\mathit{zz}}^{e}(t)+{\epsilon }_{\mathit{zz}}^{\mathit{th}}(t)+{\epsilon }_{\mathit{zz}}^{p}(t)=0\\ {\epsilon }_{\mathit{zz}}^{\mathit{th}}(t)={\alpha }_{\mathit{aust}}(T-{T}^{0})\\ {\epsilon }_{\mathit{zz}}^{p}(t)=\frac{-{\sigma }_{y}^{\mathit{aust}}-E{\alpha }_{\mathit{aust}}(T-{T}^{0})}{E+{H}^{\mathit{aust}}}\\ {\sigma }_{\mathit{zz}}(t)=-E({\epsilon }_{\mathit{zz}}^{p}(t)+{\epsilon }_{\mathit{zz}}^{\mathit{th}}(t))\\ {\epsilon }_{\gamma }^{\mathit{eff}}(t)=p(t)={\epsilon }_{\mathit{zz}}^{p}(t)\\ {\epsilon }_{\alpha }^{\mathit{eff}}(t)=0\end{array}` **During the transformation**, for :math:`{\tau }_{1}`].