Reference problem ===================== Geometry --------- .. image:: images/10000BCC0000144200000EC8A394F75553C853D0.svg :width: 261 :height: 190 .. _RefImage_10000BCC0000144200000EC8A394F75553C853D0.svg: Material properties ------------------------ The following convention is adopted in order to distinguish the parameters of the hot phase (austenitic) from the parameters of the cold phases (ferrito-pearlitic, bainitic and martensitic): +-------------------------------------------------------------------------------------+-+----------------------------------------------------------------------------------+ | |=|Characteristics relating to the austenitic phase | + .. image:: images/Object_223.svg + + + | :width: 261 | | | + :height: 190 + + + | | | | + + + + | | | | +-------------------------------------------------------------------------------------+-+----------------------------------------------------------------------------------+ | |=|characteristics relating to the ferrito-pearlitic, bainitic and martensitic phases| + .. image:: images/Object_224.svg + + + | :width: 261 | | | + :height: 190 + + + | | | | + + + + | | | | +-------------------------------------------------------------------------------------+-+----------------------------------------------------------------------------------+ **Metallurgical parameters:** TRC to model a martensitic metallurgical evolution of the form: :math:`{Z}_{\mathit{fbm}}=\{\begin{array}{ccc}0.& \mathit{si}t\le {\tau }_{1}& {\tau }_{1}=25s\\ 1-{e}^{\varphi \lambda (t-{\tau }_{1})}& \mathit{si}{\tau }_{1}\le t<{\tau }_{2}& {\tau }_{2}=40s\\ 1.& \mathit{si}t\ge {\tau }_{2}& \end{array}` with :math:`\varphi =0.03` and :math:`\lambda =-10°{\mathit{C.s}}^{-1}` **Thermal parameters:** Calorific capacity: :math:`\rho {C}_{p}=2.{10}^{6}{\mathit{J.m}}^{-3}\mathrm{.}°{C}^{-1}` Conductivity: :math:`\lambda =9999.9{\mathit{W.m}}^{-1}\mathrm{.}°{C}^{-1}` **Thermo-mechanical parameters:** * Thermo-elastic parameters: Young's module :math:`E=200000{10}^{6}\mathit{Pa}` Poisson's Ratio :math:`\nu =0.3` Thermal expansion coefficients :math:`{\alpha }_{\mathit{fbm}}=15.{10}^{-6}°{C}^{-1}` :math:`{\alpha }_{\mathit{aust}}=23.5{10}^{-6}°{C}^{-1}` Expansion coefficient definition temperature: :math:`{T}_{\mathit{ref}}=900°C` Reference thermal deformation state: :math:`\Delta {\epsilon }_{f\gamma }^{{T}_{\mathit{ref}}}=2.52{10}^{-3}` Elastic limit: :math:`{\sigma }_{y}^{\mathit{fbm}}={\sigma }_{0}^{\mathit{fbm}}+{s}^{\mathit{fbm}}(T-{T}^{0})` with :math:`{\sigma }_{0}^{\mathit{fbm}}=50.{10}^{6}\mathit{Pa}` and :math:`{s}^{\mathit{fbm}}=1.{10}^{6}\mathit{Pa.}°{C}^{-1}` :math:`{\sigma }_{y}^{\mathit{aust}}={\sigma }_{0}^{\mathit{aust}}+{s}^{\mathit{aust}}(T-{T}^{0})` with :math:`{\sigma }_{0}^{\mathit{aust}}=50.{10}^{6}\mathit{Pa}` and :math:`{s}^{\mathit{aust}}=1.3{10}^{6}\mathit{Pa.}°{C}^{-1}` * Thermoplastic parameters (law with linear work hardening) Tangent modules: :math:`{E}_{T}^{\mathit{fbm}}` and :math:`{E}_{T}^{\mathit{aust}}` are chosen such that: :math:`{H}^{\mathit{fbm}}={H}_{0}^{\mathit{fbm}}+{\lambda }^{\mathit{fbm}}(T-{T}^{0})` with :math:`{H}_{0}^{\mathit{fbm}}=0.\mathit{Pa}` and :math:`{\lambda }^{\mathit{fbm}}=-6.{10}^{6}\mathit{Pa.}°{C}^{-1}` :math:`{H}^{\mathit{aust}}={H}_{0}^{\mathit{aust}}+{\lambda }^{\mathit{aust}}(T-{T}^{0})` with :math:`{H}_{0}^{\mathit{aust}}=0.\mathit{Pa}` and :math:`{\lambda }^{\mathit{aust}}=-1.{10}^{6}\mathit{Pa.}°{C}^{-1}` We remind you that :math:`H=\frac{{\mathit{EE}}_{T}}{E-{E}_{T}}` * Parameters for transformation plasticity: Reminder: .. csv-table:: "In the case of a martensitic metallurgical evolution, the model of transformation plasticity is as follows: :math:`{\dot{\epsilon }}^{\mathit{pt}}=\frac{3}{2}\stackrel{̃}{\sigma }{k}^{\mathit{fbm}}{F}^{\text{'}}({Z}_{\mathit{fbm}}){\dot{Z}}_{\mathit{fbm}}`" Model parameters: :math:`{k}^{\mathit{fbm}}=1.{10}^{-10}{\mathit{Pa}}^{-1}` and :math:`{F}^{\text{'}}({Z}_{\mathit{fbm}})=2(1-{Z}_{\mathit{fbm}})` **Viscose parameters complementary to C modeling:** The two parameters :math:`\eta` and C are taken to be zero so that the viscoplastic model tends towards a plastic model that is independent of time. Boundary conditions and loads ------------------------------------- * :math:`{u}_{Z}=0` on the :math:`\mathit{AB}` side (symmetry condition). * traction imposed on the side :math:`\mathit{CD}`, :math:`p(t)={p}_{0}t`, :math:`{p}_{0}\mathrm{=}{15.10}^{\mathrm{6 }}\mathit{Pa}`. * :math:`T(t)={T}^{0}+\mu t`, :math:`\mu =–10°\mathit{C.}{s}^{-1}` throughout the structure. Initial conditions -------------------- :math:`{T}^{0}\mathrm{=}900°C`.