6. B modeling results#
6.1. Tested values#
Identification |
Reference |
Test |
Tolerance |
\({\epsilon }_{\mathit{zz}}^{p}\) \(t\mathrm{=}24s\) |
0 |
|
1.0E-6 (absolute) |
\(\chi\) \(t\mathrm{=}24s\) |
0 |
|
1.0E-6 (absolute) |
\({\sigma }_{\mathit{zz}}^{}\) \(t\mathrm{=}24s\) |
360.106 |
|
|
\({\epsilon }_{\mathit{zz}}^{}\) \(t\mathrm{=}24s\) |
—3.84 10-3 |
|
|
\({\epsilon }_{\mathit{zz}}^{\mathit{th}}\) \(t=24s\) |
-0.005640 |
|
|
\({\epsilon }_{\mathit{zz}}^{\mathit{meca}}\) \(t=24s\) |
0.018 |
|
|
\({\epsilon }_{\mathit{zz}}^{\mathit{plas}}\) \(t=24s\) |
0 |
|
1.0E-6 (absolute) |
\({\epsilon }_{\mathit{zz}}^{p}\) \(t=26s\) |
0.037217 |
|
|
\(\chi\) \(t=26s\) |
1 |
|
|
\({\sigma }_{\mathit{zz}}^{}\) \(t=26s\) |
|
|
|
\({\epsilon }_{\mathit{zz}}^{}\) \(t\mathrm{=}26s\) |
0.051507 |
|
|
\({\epsilon }_{\mathit{zz}}^{\mathit{th}}\) \(t=26s\) |
-0.004884 |
|
|
\({\epsilon }_{\mathit{zz}}^{\mathit{meca}}\) \(t=26s\) |
0.05639 |
|
|
\({\epsilon }_{\mathit{zz}}^{\mathit{plas}}\) \(t=26s\) |
0.05444 |
|
|
\({\epsilon }_{\mathit{zz}}^{p}\) \(t=40s\) |
0.062523 |
|
|
\(\chi\) \(t\mathrm{=}40s\) |
1 |
|
|
\({\sigma }_{\mathit{zz}}^{}\) \(t=40s\) |
600.106 |
|
|
\({\epsilon }_{\mathit{zz}}^{}\) \(t\mathrm{=}40s\) |
0.10197 |
|
|
\({\epsilon }_{\mathit{zz}}^{\mathit{th}}\) \(t\mathrm{=}40s\) |
-0.003546 |
|
|
\({\epsilon }_{\mathit{zz}}^{\mathit{meca}}\) \(t\mathrm{=}40s\) |
0.01055 |
|
|
\({\epsilon }_{\mathit{zz}}^{\mathit{plas}}\) \(t\mathrm{=}40s\) |
0.01025 |
|
|
\({\epsilon }_{\mathit{zz}}^{p}\) \(t\mathrm{=}90s\) |
0.0741 |
|
|
\(\chi\) \(t\mathrm{=}90s\) |
1 |
|
|
\({\sigma }_{\mathit{zz}}^{}\) \(t\mathrm{=}90s\) |
1350.106 |
|
|
\({\epsilon }_{\mathit{zz}}^{}\) \(t=90s\) |
0.10984 |
|
|
\({\epsilon }_{\mathit{zz}}^{\mathit{th}}\) \(t\mathrm{=}90s\) |
-0.01098 |
|
|
\({\epsilon }_{\mathit{zz}}^{\mathit{meca}}\) \(t\mathrm{=}90s\) |
0.012082 |
|
|
\({\epsilon }_{\mathit{zz}}^{\mathit{plas}}\) \(t=90s\) |
0.011407 |
|
|
6.2. notes#
In this modeling, the term due to transformation plasticity is taken into account:
\({\dot{\epsilon }}^{\mathit{pt}}(T,Z)\ne 0\) when \(\dot{Z}\mathrm{\ne }0\)