Reference solution ===================== Calculation method used for the reference solution -------------------------------------------------------- **Before transformation**, thermo-elastic solution for :math:`t<{\tau }_{1}^{\text{'}}`. :math:`\{\begin{array}{c}{\epsilon }_{\mathit{zz}}(t)={\epsilon }_{\mathit{zz}}^{e}(t)+{\epsilon }_{\mathit{zz}}^{\mathit{th}}(t)\\ {\sigma }_{\mathit{zz}}(t)={p}_{0}t\\ {\epsilon }_{\mathit{zz}}^{e}(t)=\frac{{\sigma }_{\mathit{zz}}(t)}{E}\\ {\epsilon }_{\mathit{zz}}^{\mathit{th}}(t)={\alpha }_{\mathit{aust}}(T-{T}^{0})\end{array}` The elastic limit is reached for: :math:`{\tau }_{1}^{\text{'}}=\frac{{\sigma }_{0}^{\mathit{aust}}}{{p}_{0}-{s}^{\mathit{aust}}\mu }=47.06s` **Before transformation**, thermo-elasto-plastic solution, :math:`{\tau }_{1}^{\text{'}}\le t\le {\tau }_{1}`, :math:`{\tau }_{1}=\mathrm{60 }s`. :math:`\{\begin{array}{c}{\epsilon }_{\mathit{zz}}(t)={\epsilon }_{\mathit{zz}}^{e}(t)+{\epsilon }_{\mathit{zz}}^{\mathit{th}}(t)+{\epsilon }_{\mathit{zz}}^{p}(t)\\ {\sigma }_{\mathit{zz}}(t)={p}_{0}t\\ {\epsilon }_{\mathit{zz}}^{e}(t)=\frac{{\sigma }_{\mathit{zz}}(t)}{E}\\ {\epsilon }_{\mathit{zz}}^{\mathit{th}}(t)={\alpha }_{\mathit{aust}}(T-{T}^{0})\\ {\epsilon }_{\mathit{zz}}^{p}(t)=\frac{{\sigma }_{\mathit{zz}}(t)-({\sigma }_{0}^{\mathit{aust}}+{s}^{\mathit{aust}}\mu t)}{{H}_{0}^{\mathit{aust}}+{\lambda }^{\mathit{aust}}\mu t}\end{array}` **During transformation**, thermo-elasto-metallurgical solution, :math:`{\tau }_{1}