Reference problem ===================== Geometry --------- .. image:: images/10000BFC00001FD500001B63F43520E8BEB2AE88.svg :width: 410 :height: 353 .. _RefImage_10000BFC00001FD500001B63F43520E8BEB2AE88.svg: Material properties ------------------------ The following convention is adopted in order to distinguish the parameters of the hot phase (austenitic) from the parameters of the cold phases (ferrito-pearlitic, bainitic and martensitic): +-------------------------------------------------------------------------------------+-+----------------------------------------------------------------------------------+ | |=|Characteristics relating to the austenitic phase | + .. image:: images/Object_308.svg + + + | :width: 410 | | | + :height: 353 + + + | | | | + + + + | | | | +-------------------------------------------------------------------------------------+-+----------------------------------------------------------------------------------+ | |=|characteristics relating to the ferrito-pearlitic, bainitic and martensitic phases| + .. image:: images/Object_309.svg + + + | :width: 410 | | | + :height: 353 + + + | | | | + + + + | | | | +-------------------------------------------------------------------------------------+-+----------------------------------------------------------------------------------+ **Metallurgical parameters:** TRC to model a bainitic metallurgical evolution, over the entire structure, of the form: :math:`{Z}_{\mathit{fbm}}=\{\begin{array}{ccc}0.& \mathit{si}t\le {\tau }_{1}& {\tau }_{1}=60s\\ \frac{t-{\tau }_{1}}{{\tau }_{2}-{\tau }_{1}}& \mathit{si}{\tau }_{1}\le t<{\tau }_{2}& {\tau }_{2}=112s\\ 1.& \mathit{si}t\ge {\tau }_{2}& \end{array}` **Thermal parameters:** Calorific capacity: :math:`\rho {C}_{p}=2.{10}^{6}{\mathit{J.m}}^{-3}\mathrm{.}°{C}^{-1}` Conductivity: :math:`\lambda =9999.9{\mathit{W.m}}^{-1}\mathrm{.}°{C}^{-1}` **Thermo-mechanical parameters:** * Thermo-elastic parameters: Young's module :math:`E=200000{10}^{6}\mathit{Pa}` Poisson's ratio :math:`\nu =0.3` Thermal expansion coefficients :math:`{\alpha }_{\mathit{fbm}}=15.{10}^{-6}°{C}^{-1}` :math:`{\alpha }_{\mathit{aust}}=23.5{10}^{-6}°{C}^{-1}` Expansion coefficient definition temperature: :math:`{T}_{\mathit{ref}}=900°C` Reference thermal deformation state: :math:`\Delta {\epsilon }_{f\gamma }^{{T}_{\mathit{ref}}}=2.52{10}^{-3}` Elasticity limit: :math:`{\sigma }_{y}^{\mathit{fbm}}={\sigma }_{0}^{\mathit{fbm}}+{s}^{\mathit{fbm}}(T-{T}^{0})` with :math:`{\sigma }_{0}^{\mathit{fbm}}=400.{10}^{6}\mathit{Pa}` and :math:`{s}^{\mathit{fbm}}=0.5{10}^{6}\mathit{Pa.}°{C}^{-1}` :math:`{\sigma }_{y}^{\mathit{aust}}={\sigma }_{0}^{\mathit{aust}}+{s}^{\mathit{aust}}(T-{T}^{0})` with :math:`{\sigma }_{0}^{\mathit{aust}}=530.{10}^{6}\mathit{Pa}` and :math:`{s}^{\mathit{aust}}=0.5{10}^{6}\mathit{Pa.}°{C}^{-1}` * Thermoplastic parameters (law with linear work hardening) Tangent modules: :math:`{E}_{T}^{\mathit{fbm}}` and :math:`{E}_{T}^{\mathit{aust}}` are chosen such that: :math:`{H}^{\mathit{fbm}}={H}_{0}^{\mathit{fbm}}+{\lambda }^{\mathit{fbm}}(T-{T}^{0})` with :math:`{H}_{0}^{\mathit{fbm}}=-50.{10}^{6}\mathit{Pa}` and :math:`{\lambda }^{\mathit{fbm}}=-5.{10}^{6}\mathit{Pa.}°{C}^{-1}` :math:`{H}^{\mathit{aust}}={H}_{0}^{\mathit{aust}}+{\lambda }^{\mathit{aust}}(T-{T}^{0})` with :math:`{H}_{0}^{\mathit{aust}}=1250.{10}^{6}\mathit{Pa}` and :math:`{\lambda }^{\mathit{aust}}=-5.{10}^{6}\mathit{Pa.}°{C}^{-1}` We remind you that :math:`H=\frac{{\mathit{EE}}_{T}}{E-{E}_{T}}` * Parameters for transformation plasticity: Reminder: .. csv-table:: "In the case of a metallurgical evolution of the bainitic type, the model of transformation plasticity is as follows: :math:`{\dot{\epsilon }}^{\mathit{pt}}=\frac{3}{2}\stackrel{̃}{\sigma }{k}^{\mathit{fbm}}{F}^{\text{'}}({Z}_{\mathit{fbm}}){\dot{Z}}_{\mathit{fbm}}`" Model parameters: :math:`{k}^{\mathit{fbm}}=1.{10}^{-10}{\mathit{Pa}}^{-1}` and :math:`{F}^{\text{'}}({Z}_{\mathit{fbm}})=2(1-{Z}_{\mathit{fbm}})` Boundary conditions and loads ------------------------------------- * :math:`{u}_{Z}=0` on the :math:`\mathit{AB}` side (symmetry condition). * traction imposed on the side :math:`\mathit{CD}` :math:`p(t)=\{\begin{array}{cc}{p}_{0}t& \mathit{si}t<{\tau }_{1}\\ {p}_{0}{\tau }_{1}& \mathit{si}t\ge {\tau }_{1}\end{array}` with :math:`{p}_{0}={6.10}^{6}\mathit{Pa}` and :math:`{\tau }_{1}=\mathrm{60s}` * temperature imposed on the whole structure: :math:`T(t)={T}^{0}+\mu t` with :math:`\mu =-5°{\mathit{C.s}}^{-1}` Initial conditions -------------------- .. image:: images/Object_18.svg :width: 410 :height: 353 .. _RefImage_Object_18.svg: