Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- Analytical solution was determined by F. Voldoire (EDF R&D/AMA): **Axisymmetric case (** :math:`\mathrm{2D}` **)** Move fields :math:`u={U}_{r}(r){e}_{r}` (blocked in :math:`z`) Deformation field: :math:`\varepsilon (u)=(\begin{array}{ccc}{u}_{r}\text{'}& 0& 0\\ 0& 0& 0\\ 0& 0& \frac{{u}_{r}}{r}\end{array})` according to :math:`(\begin{array}{c}r\\ z\\ \theta \end{array})` Constraint fields: :math:`\sigma (u)={\sigma }_{l}(\begin{array}{ccc}0& 0& 0\\ 0& 1& 0\\ 0& 0& 0\end{array})(\mathrm{cf.}\mathrm{conditions}\mathrm{aux}\mathrm{limites})` according to :math:`(\begin{array}{c}r\\ z\\ \theta \end{array})` **Parallelepipedic case** Move fields :math:`u={U}_{x}(x){e}_{x}+{U}_{y}(y){e}_{y}` (blocked in :math:`z`) Deformation field: :math:`\varepsilon (u)=(\begin{array}{ccc}{u}_{x}\text{'}& 0& 0\\ 0& 0& 0\\ 0& 0& {u}_{y}\text{'}\end{array})` according to :math:`(\begin{array}{c}x\\ z\\ y\end{array})` Constraint fields: :math:`\sigma (u)=\sigma (\begin{array}{ccc}0& 0& 0\\ 0& 1& 0\\ 0& 0& 0\end{array})(\mathrm{cf.}\mathrm{conditions}\mathrm{aux}\mathrm{limites})` according to :math:`(\begin{array}{c}x\\ z\\ y\end{array})` The case can be studied under plane constraints and in :math:`\mathrm{3D}`. .. image:: images/100002000000018A0000012A11AB208A2C4730E1.png :width: 2.6138in :height: 1.9689in .. _RefImage_100002000000018A0000012A11AB208A2C4730E1.png: :math:`2\nu =\frac{E}{(1+\nu )}` :math:`K=\frac{E}{(1-2\nu )}` **The law of behavior** can be written (scalar internal variable :math:`p`): :math:`\varepsilon =\frac{1}{\mathrm{9K}}\mathrm{tr}\sigma \mathrm{Id}+\frac{1}{2\mu }{\sigma }^{D}+{\varepsilon }^{P}+\alpha (T–{T}^{0})\mathrm{Id}` with: :math:`{\sigma }^{D}=\sigma –\frac{1}{3}\mathrm{tr}(\sigma )\mathrm{Id}` (constraint deviator) :math:`{\dot{\sigma }}^{P}=\frac{3}{2}\dot{p}\frac{{\sigma }^{D}}{∥{\sigma }_{\mathrm{éq}}∥}\text{et}∥{\sigma }_{\mathrm{éq}}∥=\sqrt{\frac{3}{2}{\sigma }^{D}\mathrm{.}{\sigma }^{D}}` :math:`\dot{p}=0` if :math:`f(\sigma ,p)=∥{\sigma }_{\mathrm{éq}}∥–R(p)<0` :math:`\dot{p}\ge 0` if :math:`f(\sigma ,p)=0` :math:`R(p)` refers to the work hardening function: :math:`R(p)={\sigma }_{y}+\frac{{\mathrm{EE}}_{T}}{E-{E}_{T}}p` The :math:`\dot{p}` rate can be expressed, when :math:`f(\sigma ,p)=0`. Indeed, from :math:`\dot{p}f` that is identical to zero, we draw: :math:`\dot{p}\dot{f}+\ddot{p}f=0` So, when we are on the criterion, necessarily :math:`\dot{f}=0`. That is to say: :math:`\frac{3}{2}\frac{{\sigma }^{D}\mathrm{.}{\dot{\sigma }}^{D}}{∥{\sigma }_{\mathit{éq}}∥}–\frac{\mathrm{\partial }R}{\mathrm{\partial }T}\mathrm{.}\dot{T}–\frac{\mathrm{\partial }R}{\mathrm{\partial }p}\dot{p}\mathrm{=}0` :math:`\frac{3}{2}\frac{{\sigma }^{D}\mathrm{.}{\dot{\sigma }}^{D}}{∥{\sigma }_{\mathit{éq}}∥}+{\sigma }_{y}^{o}s\dot{T}\mathrm{-}\frac{{\mathit{EE}}_{T}}{E\mathrm{-}{E}_{T}}\dot{p}\mathrm{=}0` From where: :math:`\dot{p}=\frac{E-{E}_{T}}{{\mathrm{EE}}_{T}}(\frac{3}{2}\frac{{\sigma }^{D}{\dot{\sigma }}^{D}}{∥{\sigma }_{\mathrm{éq}}∥}+{\sigma }_{y}^{o}\mathrm{.}s\mathrm{.}\dot{T})` if :math:`\dot{p}\ge 0`, for :math:`∥{\sigma }_{\mathrm{éq}}∥=R(p)` Since the stress field is uniaxial, we have: :math:`{\sigma }^{D}=\frac{{\sigma }_{L}}{3}(\begin{array}{ccc}-1& 0& 0\\ 0& 2& 0\\ 0& 0& -1\end{array})` So: :math:`∥{\sigma }_{\mathrm{éq}}∥=∣{\sigma }_{L}∣` and: :math:`{\dot{\varepsilon }}^{P}=\frac{\dot{p}}{2}\mathrm{.}\mathrm{sgn}({\sigma }_{L})\mathrm{.}(\begin{array}{ccc}-1& 0& 0\\ 0& 2& 0\\ 0& 0& -1\end{array})` The behavioral relationship leads to: :math:`\{\begin{array}{c}\dot{{\varepsilon }_{\mathrm{rr}}}=\dot{{\varepsilon }_{\theta \theta }}=\frac{-\nu }{E}\dot{{\sigma }_{L}}-\frac{\dot{p}}{2}\mathrm{sgn}({\sigma }_{L})+\alpha \dot{T}(={\dot{\varepsilon }}_{\mathrm{xx}}={\dot{\varepsilon }}_{\mathrm{yy}}\text{pour le cas du parallélépipède})\\ \dot{{\varepsilon }_{\mathrm{rr}}}=\dot{{\varepsilon }_{\theta \theta }}=\frac{-\nu }{E}\dot{{\sigma }_{L}}-\frac{\dot{p}}{2}\mathrm{sgn}({\sigma }_{L})+\alpha \dot{T}\end{array}` From where: :math:`\{\begin{array}{c}\dot{{\varepsilon }_{\mathrm{rr}}}=\dot{{\varepsilon }_{\theta \theta }}=\frac{-3}{2}\alpha \dot{T}+\frac{1-2\nu }{2E}\dot{{\sigma }_{L}}\\ \dot{p}=\mathrm{sgn}({\sigma }_{L})(-\alpha \dot{T}-\frac{\dot{{\sigma }_{L}}}{E})=0\text{si}∣{\sigma }_{L}∣{t}_{y}`, the previous result confirms that :math:`{\sigma }_{L}(t)<0`. Finally, we note that: :math:`\mathrm{sgn}({\sigma }_{L})\frac{1-2\nu }{2}\dot{p}+\dot{{\varepsilon }_{\mathrm{rr}}}=\alpha (1+\nu )\dot{T}` from where, since :math:`{\sigma }_{L}(t)<0`: :math:`{\varepsilon }_{\mathrm{rr}}(t)={\varepsilon }_{\theta \theta }(t)=\alpha \theta (1+\nu )t+\frac{1-2\nu }{2}p(t),\forall t\in \left[{t}_{y},{t}_{\mathrm{fin}}\right]` Special case of H and I models ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The thermal deformation is replaced by a given anelastic deformation. Like :math:`s=0`, :math:`{\sigma }_{L}=-E\alpha \theta` :math:`{\varepsilon }_{\mathrm{xx}}={\varepsilon }_{\mathrm{zz}}=\alpha \theta (1+\nu )t` The solution remains elastic as long as :math:`t<{t}_{y}=\frac{{\sigma }_{0}}{\theta E\alpha }=200s` Benchmark results ---------------------- :math:`{\varepsilon }_{\mathrm{rr}}` Or :math:`{\varepsilon }_{\mathrm{xx}}`, :math:`{\sigma }_{\mathrm{zz}}`, and :math:`p` in :math:`{t}_{y}` and beyond: **Elastic phase**: for :math:`t<{t}_{y}`: :math:`{\sigma }_{L}=-E\alpha \theta t` :math:`{\varepsilon }_{\mathrm{rr}}={\varepsilon }_{\theta \theta }=\alpha \theta (1+\nu )t` in axisymmetric :math:`{\varepsilon }_{\mathrm{xx}}=\alpha \theta (1+\nu )t` in plane constraints The elastic limit is reached in :math:`{t}_{y}=\frac{{\sigma }_{0}}{\theta (E\alpha +{\sigma }_{0}s)}=66.666s` from where :math:`{\sigma }_{L}({t}_{y})=\frac{\sigma }{(1+{\sigma }_{0}\frac{s}{E\alpha })}` **Elastoplastic phase**: for :math:`t\ge {t}_{y}` :math:`{\sigma }_{L}(t)={\sigma }_{0}(s\theta t-1+\frac{{E}_{t}}{E}(1-\frac{t}{{t}_{y}}))` :math:`p(t)=\frac{{\sigma }_{0}(E-{E}_{T})}{{E}^{2}}(\frac{t}{{t}_{y}}-1)` :math:`{\varepsilon }_{\mathrm{rr}}={\varepsilon }_{\theta \theta }=\alpha \theta (1+\nu )t+\frac{1-2\nu }{2}p(t)` in axisymmetric or :math:`{\varepsilon }_{\mathrm{xx}}={\varepsilon }_{\theta \theta }=\alpha \theta (1+\nu )t+\frac{1-2\nu }{2}p(t)` in plane constraints From where: **elastic phase** :math:`\begin{array}{c}\{\begin{array}{c}{t}_{y}=66.666s\\ {\sigma }_{L}({t}_{y})=-133.333\mathrm{MPa}\end{array}\\ {\varepsilon }_{\mathrm{rr}}({t}_{y})={\varepsilon }_{\theta \theta }({t}_{y})=0.86666{E}^{-3}\end{array}\}\text{phase élastique}` :math:`W=4.44410-3\mathrm{MPa}` :math:`W=0.17778{\mathrm{MPa.mm}}^{2}` (PLAN or 3D) :math:`W=0.26666{\mathrm{Mpa.mm}}^{3}\mathrm{.}\mathrm{rad}-1` (axi) **Then elastoplastic phase**: :math:`àt=80s`: :math:`\sigma (80)=-\mathrm{100.0MPa}` :math:`p(80)=0.300{E}^{-3}` :math:`{\varepsilon }_{\mathrm{rr}}(80)={\varepsilon }_{\theta \theta }(80)=1.1{E}^{-3}` to :math:`t\mathrm{=}90s`: :math:`\sigma (90)=-\mathrm{75.0MPa}` :math:`p(90)=0.525{E}^{-3}` :math:`{\varepsilon }_{\mathrm{rr}}(90)={\varepsilon }_{\theta \theta }(90)=1.275{E}^{-3}` Special case of H and I models ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ To :math:`t\mathrm{=}66.67s` :math:`{\sigma }_{L}(66.67)=-133.33\mathrm{MPa}` :math:`{\varepsilon }_{\mathrm{xx}}(66.67)={\varepsilon }_{\mathrm{zz}}(66.67)=8.667{E}^{-4}` To :math:`t\mathrm{=}80s` :math:`{\sigma }_{L}(80)=-160\mathrm{MPa}` :math:`{\varepsilon }_{\mathrm{xx}}(80)={\varepsilon }_{\mathrm{zz}}(80)=8.667{E}^{-4}` To :math:`t\mathrm{=}90s` :math:`{\sigma }_{L}(90)=-180\mathrm{MPa}` :math:`{\varepsilon }_{\mathrm{xx}}(90)={\varepsilon }_{\mathrm{zz}}(90)=8.667{E}^{-4}` Uncertainty about the solution --------------------------- Analytical solution.