4. B modeling#

4.1. Characteristics of modeling#

(4.1)#\[ \ textrm {Modeling} \ mathrm {2D}\]
_images/100007CC000069BB000067DFBB97E607D5BD7D2E.svg

Boundary conditions:

\(\mathit{N1}\): \(\mathit{N2}\):

_images/Object_55.svg _images/Object_56.svg

Charging:

Traction on the \([34]\) side (SEG2 mesh) + assignment of the same temperature on all knots

The total number of increments is 20 (10 increments between \(t=\mathrm{0s}\) and \(\mathrm{1s}\), 10 increments between \(t=\mathrm{1s}\) and \(\mathrm{2s}\))

Behavior:

The keywords ELAS and LEMAITRE are used, with the following parameters:

\(E=80000\mathrm{MPa}\)

\(\nu =0.35\)

\(\alpha =0.00004\)

\(n=4.39\)

\(\frac{1}{K}=0.003944\)

\(\text{UN\_SUR\_M}=0.\)

4.2. Characteristics of the mesh#

Number of knots: 4

Number of meshes: 2

1 QUAD4

1 SEG2

4.3. Tested sizes and results#

The calculated deformations serve as a reference for modeling A.

Identification

Reference

Tolerance

\(t=0.3\) Constraints \(\mathit{SIGYY}\) (\(\mathit{N3}\))

-91.7598

1.00%

\(t=0.8\) Constraints \(\mathit{SIGYY}\) (\(\mathit{N3}\))

-92.5802

1.00%

\(t=1.3\) Constraints \(\mathit{SIGYY}\) (\(\mathit{N3}\))

70.1846

1.00%

\(t=2.0\) Constraints \(\mathit{SIGYY}\) (\(\mathit{N3}\))

84.4120

1.00%

Identification

Reference type

\(t=1.3\) Total deformations \(\mathit{EPSYY}\) (\(\mathit{N3}\))

Non-regression

\(t=2.0\) Total deformations \(\mathit{EPSYY}\) (\(\mathit{N3}\))

Non-regression

Identification

Reference type

\(t=1.3\) Plastic deformations \(\mathit{EPSYY}\) (\(\mathit{N3}\))

Non-regression

\(t=2.0\) Plastic deformations \(\mathit{EPSYY}\) (\(\mathit{N3}\))

Non-regression

Identification

Reference type

\(t=0.8\) Thermal deformations \(\mathit{EPSYY}\) (\(\mathit{N3}\))

Non-regression

\(t=1.3\) Thermal deformations \(\mathit{EPSYY}\) (\(\mathit{N3}\))

Non-regression

\(t=2.0\) Thermal deformations \(\mathit{EPSYY}\) (\(\mathit{N3}\))

Non-regression

Identification

Reference type

\(t=1.3\) Mechanical deformations \(\mathit{EPSYY}\) (\(\mathit{N3}\))

Non-regression

\(t=2.0\) Mechanical deformations \(\mathit{EPSYY}\) (\(\mathit{N3}\))

Non-regression