1. Reference problem#

1.1. Geometry#

A cylindrical specimen slice with a diameter \(160\mathit{mm}\) is modelled.

_images/1000224200003A8E000018DFB0C2A2A264AB8EC7.svg

1.2. Material properties#

Each model makes it possible to validate a diffusion coefficient.

_images/Object_1.svg

, namely:

  • modeling A: Mensi’s law

  • B modeling: Granger’s law

  • C modeling: definition of \(D\) in the form of a tablecloth

  • D modeling: Bazant’s law

    _images/Object_4.svg

The coefficients used are those recommended by Granger in his thesis [bib1]:

SECH_MENSI:

\(A\mathrm{=}0.74{10}^{\mathrm{-}13}{m}^{2}\mathrm{/}s\)

\(B\mathrm{=}0.05\)

SECH_GRANGER

\(A\mathrm{=}0.74{10}^{\mathrm{-}13}{m}^{2}\mathrm{/}s\)

\(B\mathrm{=}0.05\) \({T}_{0}\mathrm{=}293°K\) \({Q}_{s}\mathrm{/}R\mathrm{=}4700{K}^{\mathrm{-}1}\)

SECH_NAPPE

We enter Mensi’s law

_images/100047E8000036150000207ACBE9C75B4F76E784.svg

in tablecloth form

SECH_BAZANT

\(\mathit{D1}\mathrm{=}3.0{10}^{\mathrm{-}10}{m}^{2}\mathrm{/}s\)

\(\alpha \mathrm{=}0.04\) \(n\mathrm{=}6\)

_images/Object_5.svg

with \({C}_{0}\mathrm{=}128.8l\mathrm{/}{m}^{3}\) and \({C}_{\mathit{eq}}\mathrm{=}58.8l\mathrm{/}{m}^{3}\)

1.3. Boundary conditions and loads#

The drying calculation is carried out over a period of 5 years.

  • the temperature remains uniform and is \(20°C\)

  • we apply to \(\mathit{FE}\): \({C}_{\mathit{eq}}\mathrm{=}58.8l\mathrm{/}{m}^{3}\)

1.4. Initial conditions#

The initial conditions consist of the initial temperature, which is taken to be \(20°C\), and the initial water concentration, which is equal

_images/Object_8.svg

.