Reference problem ==== Geometry ---- The structure studied is a slice of a cylinder, modelled axisymmetrically, (cf HPLA100) .. image:: images/10006098000069D500005FE9EE2D3CCC8AF7DBBA.svg :width: 509 :height: 461 .. _RefImage_10006098000069D500005FE9EE2D3CCC8AF7DBBA.svg: Material properties ---- The material is homogeneous, isotropic, and linear thermoelastic. The mechanical coefficients are :math:`E\mathrm{=}{2.10}^{5}M\mathrm{/}{\mathit{mm}}^{2}`; :math:`\nu \mathrm{=}0.3` The expansion coefficient is a function of temperature: :math:`\alpha \mathrm{=}{10}^{\mathrm{-}5}°{C}^{\mathrm{-}1}` for :math:`T\mathrm{=}100°C`, :math:`\alpha \mathrm{=}{10}^{\mathrm{-}4}°{C}^{\mathrm{-}1}` for :math:`T\mathrm{=}0°C` The reference temperature is :math:`0°C`. The thermal coefficients are equal to: :math:`\lambda \mathrm{=}1W\mathrm{/}mK`, :math:`\rho {C}_{p}\mathrm{=}1000\mathit{MJ}\mathrm{/}{m}^{3}K` Boundary conditions and thermal calculation loads ---- On its inner edge, the cylinder is subjected to an exchange with a fluid that changes abruptly from :math:`100°C` to :math:`0°C`: * zero flow at the edges :math:`\mathit{AB}`, :math:`\mathit{BC}`, :math:`\mathit{CD}` * on edge :math:`\mathit{AD}`, convective exchange condition, with: :math:`H\mathrm{=}100W\mathrm{/}{\mathit{mm}}^{2}\mathrm{/}°C` :math:`\mathit{Text}\mathrm{=}100°C` to :math:`t\mathrm{=}\mathrm{0s}`, then :math:`0°C` to :math:`t\mathrm{=}\mathrm{0.01s}`, and then kept constant. Boundary conditions and loads for mechanical calculation ---- **Symmetry conditions** Unrestrained case: zero displacement following :math:`\mathit{Oy}` along side :math:`\mathit{AB}`. Blocked case: zero displacement following :math:`\mathit{Oy}` along sides AB and :math:`\mathit{CD}`. Loading: thermal expansion.