Reference problem ===================== .. image:: images/1000000000000143000001E568884D96E37996C6.png :width: 1.339in :height: 2.1661in .. _RefImage_1000000000000143000001E568884D96E37996C6.png: Geometry --------- The structure consists of a tube in which a fluid carrying the thermal shock circulates. * Straight tube section * Tube length: :math:`L=0.1m` * Outer tube diameter: :math:`{\varphi }_{\mathit{ext}}=0.048m` * Tube Thickness: :math:`e=0.006m` Material properties ----------------------- * :math:`\lambda =15W/m°C` Thermal Conductivity Coefficient * :math:`{C}_{P}=500J/\mathit{Kg}°C` Specific heat * :math:`a=3.8x{10}^{-6}{m}^{2}/s` Thermal diffusivity * :math:`E=200000\mathit{MPa}` Young's module * :math:`\nu =0.3` Poisson's Ratio * :math:`\alpha =15x{10}^{-6}/°C` Coefficient of thermal expansion Boundary conditions and loads ------------------------------------- The thermal shock is transmitted to the tube by the fluid via convective exchange. Two thermal shocks are studied: .. csv-table:: "Thermal shock", "Intrados", "Extrados" ":math:`\Delta T=1°C` "," :math:`{T}_{\mathit{fluide}}=21°C` :math:`h=20000W/{m}^{2}/°C` "," :math:`{T}_{\mathit{imposée}}=20°C`" ":math:`\Delta T=50°C` "," :math:`{T}_{\mathit{fluide}}=70°C` :math:`h=20000W/{m}^{2}/°C` "," :math:`{T}_{\mathit{imposée}}=20°C`" Thermal shock corresponds to the difference between the initial temperature of the tube and that of the fluid. The flow is zero in the axial direction of the tube (:math:`\frac{\partial T(x,t)}{\partial z}=0`). For mechanical analysis, the tube is locked at its base in the axial direction. Initial conditions -------------------- * :math:`T(x,t=0)=20°C` for the :math:`\mathrm{\Delta }T=50°C` shock * :math:`T(x,t=0)=20°C` for the unity shock :math:`\Delta {T}_{U}=1°C` Details concerning the models --------------------------------------- To define time discretization, we use the time constant :math:`\tau =\frac{{e}^{2}}{(a{\pi }^{2})}=1s`, which gives us, in the case of a thermal shock, the instant beyond which the thermal behavior becomes almost stationary in the tube. The duration of the thermal shock is set to :math:`{10.}^{-1}s`. We chose discretization in the following time: .. csv-table:: "5", "not for", ":math:`[0.0,0.1]` ", "either", ":math:`\Delta t=0.01s`" "4", "not for", ":math:`[0.1,0.5]` ", "either", ":math:`\Delta t=0.04s`" "4", "not for", ":math:`[0.5,3.0]` ", "either", ":math:`\Delta t=0.25s`" "1", "not for", ":math:`[3.0\mathrm{,5}.0]` ", "either", ":math:`\Delta t=0.4s`" "1", "not for", ":math:`[5.0\mathrm{,10}\mathrm{.}]` ", "either", ":math:`\Delta t=2.5s`"