Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The solution is analytical. .. image:: images/100015620000131F000013A37632636E46227435.svg :width: 246 :height: 253 .. _RefImage_100015620000131F000013A37632636E46227435.svg: Thermal loading is equivalent to a loading defined by a uniform distribution of moments at the edges as shown in the figure. The value of these moments per unit length is equal to: .. image:: images/Object_3.svg :width: 246 :height: 253 .. _RefImage_Object_3.svg: . Either: .. image:: images/Object_4.svg :width: 246 :height: 253 .. _RefImage_Object_4.svg: . This leads to an even distribution of :math:`M` in the plate. Benchmark results ---------------------- So we have :math:`M=2380.95238N`; the plate being rotated by an angle :math:`\theta \mathrm{=}53°.1301`, we have components whose absolute value is: :math:`M\mathrm{\times }\mathrm{cos}\theta \mathrm{=}1428.5715N` and :math:`M\mathrm{\times }\mathrm{sin}\theta \mathrm{=}1904.76184N` The reactions are defined by a distribution of moments equal to the previous one in absolute value and of opposite sign. Meshes are squares whose length is equal to :math:`0.05m`, so the moments in each node must be equal to :math:`{M}_{1}\mathrm{=}M\mathrm{\times }\mathrm{cos}\theta \mathrm{\times }0.05\mathrm{=}71.42857\mathit{N.m}` and :math:`{M}_{2}\mathrm{=}M\mathrm{\times }\mathrm{sin}\theta \mathrm{\times }0.05\mathrm{=}95.2381\mathit{N.m}` either .. image:: images/Object_7.svg :width: 246 :height: 253 .. _RefImage_Object_7.svg: Uncertainty about the solution --------------------------- Uncertainty is zero. Bibliographical references --------------------------- 1. TIMOSHENKO: Theory of plates and shells chapter 2, article 14.