Reference problem ===================== Geometry --------- We consider a circular crack immersed in a thermo-elastic medium. Taking into account the symmetries of the problem, only one eighth of the structure is represented: .. image:: images/Object_1.svg :width: 339 :height: 294 .. _RefImage_Object_1.svg: The dimensions of the crack are as follows: :math:`\mathrm{OP}=\text{OR}=1.0` The medium is modelled by a parallelepiped with the following dimensions: :math:`\mathrm{OB}=\mathrm{OD}=\mathrm{OC}=30.0` Material properties ----------------------- .. csv-table:: "Thermal conductivity:", ":math:`\lambda =1.`" "Coefficient of thermal expansion:", ":math:`\alpha \mathrm{=}{10}^{\mathrm{-}6}\mathrm{/}°C`" "", "" "Young's module:", ":math:`E={2.10}^{5}\mathrm{MPa}`" "Poisson's ratio:", ":math:`\nu =0.3`" Boundary conditions and loads ------------------------------------- * Mechanics: imposed movements (DDL_IMPO) on the following groups of cells: * :math:`\mathrm{DX}=0` out of :math:`\mathrm{ODHE}`; * :math:`\mathrm{DY}=0` out of :math:`\mathrm{OEFB}`; * :math:`\mathrm{DZ}=0` on :math:`\mathrm{PBCDRQ}` (i.e. underside of the parallelepiped, without the crack lip). * Thermal: temperature imposed (TEMP_IMPO) on the following groups of meshes: * :math:`\mathrm{TEMP}=0` on :math:`\mathrm{BCGH}`, :math:`\mathrm{CDHG}` and :math:`\mathrm{EFGH}` (outer faces of the parallelepiped); * :math:`\mathrm{TEMP}=-1` out of :math:`\mathrm{OPQR}`.