3. Modeling A#

3.1. Characteristics of modeling#

The modeling is shown in the figure below:

figures/v6.08.122_maillage.png:width:70%

3.2. Characteristics of the mesh#

The dimensions of the geometry:

  • \(L_x = L_y = 2.0~cm\).

  • \(e_x = e_y = 0.5~cm\).

  • All nodes are at \(z=0\), except for nodes 2 and 8 which are at the same coordinates \(x\) and \(y\) as nodes 1 and 7, but at \(z=-0.02~cm\).

The mesh consists only of discrete ones:

  • « DIS_T_D_N » are affected on nodes 3, 4, 5, 5, 6, 9, 10, 11, 12.

  • a « DIS_T_D_L » is assigned between the nodes (6, 10).

  • « DIS_TR_D_L » are assigned between nodes (1, 2) and (7, 8).

3.3. Mechanical characteristics#

The only characteristics are for discrete elements. These characteristics are not physical, they only serve to give a certain stiffness to the system.

3.4. Loads#

Moves imposed at node 1:

Tableau 3.1 :width: 50%#

Instants

Node 1 \(D_x\)

Node 1 \(D_y\)

0

\(0.0 *e_x\)

\(-0.0* e_y\)

1

\(0.0 *e_x\)

\(-1.0* e_y\)

2

\(0.0 *e_x\)

\(-2.0* e_y\)

3

\(0.0 *e_x\)

\(-3.0* e_y\)

4

\(1.0 *e_x\)

\(-3.0* e_y\)

5

\(2.0 *e_x\)

\(-2.0* e_y\)

6

\(3.0 *e_x\)

\(-1.0* e_y\)

7

\(3.0 *e_x\)

\(-0.0* e_y\)

8

\(0.0 *e_x\)

\(-0.0* e_y\)

9

\(1.0 *e_x\)

\(-0.0* e_y\)

10

\(2.0 *e_x\)

\(-0.0* e_y\)

11

\(3.0 *e_x\)

\(-0.0* e_y\)

12

\(3.0 *e_x\)

\(-1.0* e_y\)

13

\(2.0 *e_x\)

\(-2.0* e_y\)

14

\(1.0 *e_x\)

\(-3.0* e_y\)

15

\(0.0 *e_x\)

\(-3.0* e_y\)

16

\(0.0 *e_x\)

\(-0.0* e_y\)

figures/v6.08.122_deplacement_B.png:width:70%
figures/v6.08.122_trajectoire_B.png:width:70%

3.5. Tested sizes and results#

The quantities tested are the displacements at node 7, those at node 1 are the data:

Tableau 3.2 :width: 50%#

Instants

Node 1 \(D_x\)

Node 1 \(D_y\)

Node 1

Node 7 \(D_x\)

Node 7 \(D_y\)

5.0

1.00e-02

-1.00e-02

5.00e-03

0.00e-00

13.0

1.00e-02

-1.00e-02

0.00e-02

0.00e-00

-5.00e-03

figures/v6.08.122_deplacement_C.png:width:70%