1. Reference issues#

1.1. Geometry#

Geometry is a segment with 2 nodes. The initial length of the segment is \(0.1\mathrm{m}\).

_images/1000020100000640000000B9A2387CB7FAA54173.png

1.2. Modeling A#

Discreet is a SEG2de type K_T_D_L. Its behavior is CHOC_ENDO.

1.2.1. Material properties#

The table below shows the characteristics of the material. During a calculation carried out with the operator STAT_NON_LINE, depreciation is not taken into account.

Ux [m]

Strength [N]

Stiffness [N/m]

0.00

0.0

2000.0

0.20

400.0

2000.0

0.50

450.0

2000.0

0.70

400.0

2000.0

0.95

375.0

2000.0

1.30

350.0

2000.0

1.60

300.0

2000.0

The figure below shows the behavior corresponding to the data.

_images/1000020100000CC6000006654DFAFC3B70645267.png

The following commands are used to define the material:

ldepla= nu.Array ([0.0, 2.0, 5.0, 7.0, 9.50, 13.0, 16.0,]) /10.0

lforce= nu.Array ([0.0, 4.0, 4.5, 4.0, 3.75, 3.50, 3.0,]) * 100.0

# Constant stiffness

lraid= nu.Array ([2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,]) * 1000.0

# Damping: useless in static but mandatory to give

death = nu.Array ([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,])

#

fctfx = DEFI_FONCTION (NOM_PARA = “X”, ABSCISSE = ldepla, ORDONNEE = lforce, )) **

fctrd = DEFI_FONCTION (NOM_PARA = “X”, ABSCISSE = lrepla, ORDONNEE = stiff, )) **

ctam = DEFI_FONCTION (NOM_PARA = “X”, ABSCISSE = ldepla, ORDONNEE = lamort, )) **

#

Grilleac = DEFI_MATERIAU (

DIS_CHOC_ENDO = _F (

FX = fctfx, RIGI_NOR = fctrd, AMOR_NOR **** = fctam,

DIST_1 = 0.0, DIST_2 ** = 0.0,

CRIT_AMOR = “INCLUS”,

),

)

Note: it is mandatory to fill in CRIT_AMOR. When the calculation is performed in non-linear statics, whether the value is INCLUS or EXCLUS has no influence on the results [R5.03.17].

1.3. B modeling#

This case models behavior CHOC_ENDO with a stiffness that is variable and a function of \(\mathrm{Ux}\).

The discrete one is a K_T_D_L.

1.3.1. Material properties#

The table below shows the characteristics of material DIS_CHOC_ENDO. For a calculation carried out with the operator STAT_NON_LINE, depreciation is not taken into account.

Ux [m]

Strength [N]

Stiffness [N/m]

0.00

0.0

2000.0

0.20

400.0

2000.0

0.50

450.0

1800.0

0.70

400.0

1400.0

0.95

375.0

1400.0

1.30

350.0

1350.0

1.60

300.0

1330.0

Compared to modeling \(A\), only the definition of stiffness changes.

# Variable stiffness

lraid= nu.Array ([2.0, 2.0, 1.8, 1.4, 1.4, 1.35, 1.33,]) * 1000.0

The figure below shows the behavior corresponding to the data.

_images/1000020100000CC6000006650D7BFD7DE8F89B72.png