Reference issues ====================== Geometry --------- Discreet ones, like POI1 or SEG2 with a behavior like DIS_CONTACT. Modeling A -------------- This case models a discrete elastic in parallel with a discrete shock. Material properties ~~~~~~~~~~~~~~~~~~~~~~~~~~ Stiffness of the discrete elastic K_T_D_L, in coordinate system GLOBAL: (:math:`{K}_{\mathit{el}}`, :math:`{K}_{\mathit{el}}` ,0) with :math:`{K}_{\mathit{el}}=1` For the discreet DIS_CONTACT .. csv-table:: "RIGI_NOR :math:`{K}_{n}` ", "1.0" "RIGI_TAN :math:`{K}_{t}` ", "0.5" "COULOMB :math:`\mu` ", "0.5" "DIST_1 ", "0.5" "DIST_2 ", "0.0" Table 1.2.1-a: Material parameters of the shock discrete Boundary conditions and loads ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ One end is recessed. The other end: :math:`\mathit{DZ}=0`, :math:`\mathit{FX}=-1`, :math:`\mathit{FY}=2`. Loads :math:`\mathit{FX}` and :math:`\mathit{FY}` are affected by the following time functions: .. csv-table:: "**Time**", "**Affecting Function** :math:`\mathit{FX}` ", "**Affecting Function** :math:`\mathit{FY}`" "0.0", "0.0", "0.0" "1.0", "1.0", "0.0" "1.5", "1.0", "1.0" "2.0", "1.0", "0.0" Table 1.2.2-a: Load multiplier functions B modeling -------------- This case models a discrete like SEG2. +-----------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | |:math:`\mathit{Pt}1=(\mathrm{0.0,}\mathrm{0.0,}0.0)` :math:`\mathit{Pt}2=(\mathrm{1.0,}\mathrm{0.0,}0.0)` :math:`L1\mathrm{:}(\mathit{PT}\mathrm{1,}\mathit{PT}2)`| + .. image:: images/100000000000018B00000173BB318F9AB49CB94A.png + + | :width: 1.4827in | | + :height: 1.2598in + + | | | + + + | | | +-----------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------+ Material properties ~~~~~~~~~~~~~~~~~~~~~~~~~~ The behavior of the discrete is DIS_CONTACT, the material is DIS_CONTACT. For loading path 1: MAT1 **= DEFI_MATERIAU (** **DIS_CONTACT =** **_F (RIGI_NOR =** 10000.0, **10000.0,** RIGI_TAN =**20000.0,** COULOMB =** 0.3, **AMOR_TAN =** 10.0, **DIST_1 =** 0.5, **DIST_2 =** 0.5 **)**, **)** The length of the discrete is :math:`1m`, with DIST_1 and DIST_2 taken into account, it is initially in contact without creating any effort. For loading path 2: MAT2 **= DEFI_MATERIAU (** **DIS_CONTACT =** **_F (RIGI_NOR =** 10000.0, **10000.0,** RIGI_TAN =**20000000.0,** COULOMB =** 0.3, **AMOR_TAN =** 10.0, **DIST_1 =** 0.5, **DIST_2 =** 0.5 **)**, **)** The length of the discrete is :math:`1m`, with DIST_1 and DIST_2 taken into account, it is initially in contact without creating any effort. For loading path 3: MAT1 **= DEFI_MATERIAU (** **DIS_CONTACT =** **_F (RIGI_NOR =** 10000.0, **10000.0,** RIGI_TAN =**20000.0,** COULOMB =** 0.3, **AMOR_TAN =** 10.0, **DIST_1 =** 0.5, **DIST_2 =** 0.75 **)**, **)** The length of the discrete is :math:`1m`, with DIST_1 and DIST_2 taken into account, it is initially in contact with the creation of an effort corresponding to a depression of :math:`0.25m` Boundary conditions and loads ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Node :math:`\mathit{Pt}2` is stuck. At node :math:`\mathit{Pt}1`, displacements are imposed according to the following time :math:`X,Y,Z`. Loading path no. 1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. csv-table:: "Time", "**0.00**", "**1.00**", "**1.00**", "**2.00**", "**4.00**", "**6.00**", "**6.00**", "**7.00**", "**7.00**", "**7.00**", "**7.00**", "**7.00**", "**7.00**", "**7.00**", "**7.00**", "**7.00**", "**7.00**", "**7.00**", "**7.00**", "**7.00**", "**7.00**", "**7.00**", "**7.00**", "**7.00**", "** "**Ux**", "0.00", "1.00", "1.00", "1.00", "1.00", "0.50", "0.00", "-0.50", "0.00", "0.00", "2.00", "2.00", "2.00" "**Uy & Uz**", "0.00", "0.00", "0.00", "0.00", "1.00", "1.00", "0.50", "0.25", "0.10", "0.10", "0.10", "0.10", "0.10", "0.10", "0.10", "0.10", "0.10", "0.10", "0.10", "0.10", "0.10", "0.10", "0.10", "0.10", "0.10", "0.10", "0.10"", "0.10" Table 1.3.2.1-a: Loading functions 1. .. image:: images/100002010000087200000512FE382F150BCFED17.png :width: 4.5626in :height: 2.3146in .. _RefImage_100002010000087200000512FE382F150BCFED17.png: **Figure** 1.3.2.1-a **: Charging path** no**.** With: • :math:`\mathit{Ux}` represents the displacement in the discrete axis. A negative displacement corresponds to the "detachment" of the discrete. • :math:`\mathit{Uy},\mathit{Uz}` represents the displacement in the tangential plane to the discrete. .. _DdeLink__2048_1179840845: Loading path no. 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^ This path is circular and makes it possible to verify that the frictional force is in the direction of the speed of movement. .. image:: images/1000020100000A54000005E8EB6FD6AEF766B951.png :width: 5.1374in :height: 2.6339in .. _RefImage_1000020100000A54000005E8EB6FD6AEF766B951.png: **Figure** 1.3.2.2-a **: Loading path** no.2 **.** With: • :math:`\mathit{Dx}` represents the displacement in the discrete axis. The discreet is always in contact. • :math:`\mathit{Dy},\mathit{Dz}` represents the displacement in the tangential plane to the discrete. Loading path no. 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ This path corresponds to path No. 1 in the tangential plane. As this discrete is initially pressed from :math:`0.25m`, the movement along the :math:`X` axis is offset by :math:`-0.25m` to obtain the same results. C modeling -------------- This case models a discrete like POI1. .. image:: images/100000000000018B0000016ECC4704375A761661.png :width: 1.9693in :height: 1.8256in .. _RefImage_100000000000018B0000016ECC4704375A761661.png: The material properties and the loading paths are identical to those of the B model.