1. Reference problem#

1.1. Geometry#

It is a material point, representative of a state of homogeneous stresses and deformations.

1.2. Material properties#

1.2.1. Isotropic elasticity coefficients#

Poisson’s ratio: \(\nu =0.33\),

Young’s module: \(E=184000.\mathrm{MPa}\)

1.2.2. Flow law coefficients VISCOCHAB#

VISCOCHAB =_F (Q_M=270.5400631,

G_R=0.0,

ETA =0.135

C1=1.823924371 E5,

G2_0=178.6588221,

B=51.31782615,

K_0=156.860705,

K=97.82907013,

N=6.835707681,

C2=1.66796546 E4,

A_I=0.5817571069,

G1_0=3079.148555,

MU=10.00231083,

Q_0=-86.18795281,)

1.2.3. Hardening law coefficients VISC_CIN2_MEMO#

MEMO_ECRO =_F (MU = 10.00231083,

Q_M = 270.5400631,

Q_0 = -86.18795281,

ETA = 0.135),

CIN2_CHAB =_F (B=51.31782615,

C2_I=1.66796546 E4,

C1_I=1.823924371 E5,

G2_0=178.6588221,

G1_0=3079.1485551,

R_I=0.0,

W=0.0,

R_0=97.829070131,

K=1.0,

A_I=0.58175710691),

LEMAITRE =_F (UN_SUR_K =6.37508292911937697 E-3, (=1./156.860705)

UN_SUR_M =0.0,

N=6.835707681),

1.3. Boundary conditions and loads#

The load is in imposed deformations: 13.5 amplitude cycles: \({\varepsilon }_{\mathit{yy}}\mathrm{=}\mathrm{\pm }0.3\text{\%}\)

Each cycle lasts \(\mathrm{3s}\), so the total charging time is \(40.5\text{s}\).

The time step for numerical resolution is for each of the 3 calculations in \(\mathrm{0.015s}\).

1.4. Initial conditions#

Zero stresses and deformations.