1. Reference problem#
1.1. Geometry#
It is a material point, representative of a state of homogeneous stresses and deformations.
1.2. Material properties#
1.2.1. Isotropic elasticity coefficients#
Poisson’s ratio: \(\nu =0.33\),
Young’s module: \(E=184000.\mathrm{MPa}\)
1.2.2. Flow law coefficients VISCOCHAB#
VISCOCHAB =_F (Q_M=270.5400631,
G_R=0.0,
ETA =0.135
C1=1.823924371 E5,
G2_0=178.6588221,
B=51.31782615,
K_0=156.860705,
K=97.82907013,
N=6.835707681,
C2=1.66796546 E4,
A_I=0.5817571069,
G1_0=3079.148555,
MU=10.00231083,
Q_0=-86.18795281,)
1.2.3. Hardening law coefficients VISC_CIN2_MEMO#
MEMO_ECRO =_F (MU = 10.00231083,
Q_M = 270.5400631,
Q_0 = -86.18795281,
ETA = 0.135),
CIN2_CHAB =_F (B=51.31782615,
C2_I=1.66796546 E4,
C1_I=1.823924371 E5,
G2_0=178.6588221,
G1_0=3079.1485551,
R_I=0.0,
W=0.0,
R_0=97.829070131,
K=1.0,
A_I=0.58175710691),
LEMAITRE =_F (UN_SUR_K =6.37508292911937697 E-3, (=1./156.860705)
UN_SUR_M =0.0,
N=6.835707681),
1.3. Boundary conditions and loads#
The load is in imposed deformations: 13.5 amplitude cycles: \({\varepsilon }_{\mathit{yy}}\mathrm{=}\mathrm{\pm }0.3\text{\%}\)
Each cycle lasts \(\mathrm{3s}\), so the total charging time is \(40.5\text{s}\).
The time step for numerical resolution is for each of the 3 calculations in \(\mathrm{0.015s}\).
1.4. Initial conditions#
Zero stresses and deformations.