6. D modeling#

6.1. Characteristics of modeling#

A material point whose monocrystalline flow law is MONO_DD_CC_IRRA, comprising 12 sliding systems from the CUBIQUE1 family, is stressed under imposed stress.

6.2. Tested sizes and results#

6.2.1. Tested values#

Integration RUNGE_KUTTA

Variable

Instants \((s)\)

Reference

\({\rho }_{8}\)

1

1.0003807E+11

\({\rho }_{5}\)

1

1.0001773E+11

\({\gamma }_{8}\)

1

2.470697430610E-07

\({\gamma }_{5}\)

1

-1.139016265372E-07

\({\varepsilon }_{\mathrm{xx}}^{\mathrm{vp}}\)

1

-1.479102030578E-07

\({\varepsilon }_{\mathit{zz}}^{\mathit{vp}}\)

1

1.475432149480E-07

\({\varepsilon }_{\mathit{xy}}^{\mathit{vp}}\)

1

3.852669669294E-08

\({\varepsilon }_{\mathit{yz}}^{\mathit{vp}}\)

1

1.045760560539705E-07

Integration IMPLICITE

(compared to explicit integration)

Variable

Instants \((s)\)

Reference

Tolerance%

\({\rho }_{8}\)

1

1.0003807E+11

0.5

\({\rho }_{5}\)

1

1.0001773E+11

0.5

\({\gamma }_{8}\)

1

2.470697430610E-07

2

\({\gamma }_{5}\)

1

-1.139016265372E-07

2

\({\varepsilon }_{\mathrm{xx}}^{\mathrm{vp}}\)

1

-1.479102030578E-07

5

\({\varepsilon }_{\mathrm{zz}}^{\mathrm{vp}}\)

1

1.475432149480E-07

2

\({\varepsilon }_{\mathit{xy}}^{\mathit{vp}}\)

1

3.852669669294E-08

2

\({\varepsilon }_{\mathit{yz}}^{\mathit{vp}}\)

1

1.045760560539705E-07

2

Note: the differences are due to time discretization, which is coarser with implicit integration.