6. D modeling#
6.1. Characteristics of modeling#
A material point whose monocrystalline flow law is MONO_DD_CC_IRRA, comprising 12 sliding systems from the CUBIQUE1 family, is stressed under imposed stress.
6.2. Tested sizes and results#
6.2.1. Tested values#
Integration RUNGE_KUTTA
Variable |
Instants \((s)\) |
Reference |
\({\rho }_{8}\) |
1 |
1.0003807E+11 |
\({\rho }_{5}\) |
1 |
1.0001773E+11 |
\({\gamma }_{8}\) |
1 |
2.470697430610E-07 |
\({\gamma }_{5}\) |
1 |
-1.139016265372E-07 |
\({\varepsilon }_{\mathrm{xx}}^{\mathrm{vp}}\) |
1 |
-1.479102030578E-07 |
\({\varepsilon }_{\mathit{zz}}^{\mathit{vp}}\) |
1 |
1.475432149480E-07 |
\({\varepsilon }_{\mathit{xy}}^{\mathit{vp}}\) |
1 |
3.852669669294E-08 |
\({\varepsilon }_{\mathit{yz}}^{\mathit{vp}}\) |
1 |
1.045760560539705E-07 |
Integration IMPLICITE
(compared to explicit integration)
Variable |
Instants \((s)\) |
Reference |
Tolerance% |
\({\rho }_{8}\) |
1 |
1.0003807E+11 |
0.5 |
\({\rho }_{5}\) |
1 |
1.0001773E+11 |
0.5 |
\({\gamma }_{8}\) |
1 |
2.470697430610E-07 |
2 |
\({\gamma }_{5}\) |
1 |
-1.139016265372E-07 |
2 |
\({\varepsilon }_{\mathrm{xx}}^{\mathrm{vp}}\) |
1 |
-1.479102030578E-07 |
5 |
\({\varepsilon }_{\mathrm{zz}}^{\mathrm{vp}}\) |
1 |
1.475432149480E-07 |
2 |
\({\varepsilon }_{\mathit{xy}}^{\mathit{vp}}\) |
1 |
3.852669669294E-08 |
2 |
\({\varepsilon }_{\mathit{yz}}^{\mathit{vp}}\) |
1 |
1.045760560539705E-07 |
2 |
Note: the differences are due to time discretization, which is coarser with implicit integration.