Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The analytical solution corresponding to pre-work hardening can be calculated (monotonic traction, modeling A): The system of equations for the problem with memory effect is written (20 equations) [R5.03.04]: **Elasticity**: :math:`\tilde{\sigma }\mathrm{=}2\mu (\tilde{\varepsilon }\mathrm{-}{\varepsilon }^{p})` Plasticity criterion .. image:: images/Object_3.svg :width: 255 :height: 49 .. _RefImage_Object_3.svg: Plastic flow: .. image:: images/Object_4.svg :width: 255 :height: 49 .. _RefImage_Object_4.svg: with .. image:: images/Object_5.svg :width: 255 :height: 49 .. _RefImage_Object_5.svg: **Isotropic work hardening**: .. image:: images/Object_6.svg :width: 255 :height: 49 .. _RefImage_Object_6.svg: **Maximum work hardening memory:** .. image:: images/Object_7.svg :width: 255 :height: 49 .. _RefImage_Object_7.svg: where q is determined by: * a domain .. image:: images/Object_8.svg :width: 255 :height: 49 .. _RefImage_Object_8.svg: characterizing the maximum plastic deformations, whose radius q measures and .. image:: images/Object_9.svg :width: 255 :height: 49 .. _RefImage_Object_9.svg: The center * :math:`\xi` is calculated according to a law of normality, i.e.: .. image:: images/Object_11.svg :width: 255 :height: 49 .. _RefImage_Object_11.svg: , with .. image:: images/Object_12.svg :width: 255 :height: 49 .. _RefImage_Object_12.svg: On the surface of the maximum work hardening range, we have :math:`F\mathrm{=}0`. Applying condition :math:`\mathit{dF}\mathrm{=}0`, we get the speed expression: .. image:: images/Object_13.svg :width: 255 :height: 49 .. _RefImage_Object_13.svg: For a material point under uniaxial load, the components of the (uniform) fields are: .. image:: images/1000068A000069D500002BED0D930C5C37981D8D.svg :width: 255 :height: 49 .. _RefImage_1000068A000069D500002BED0D930C5C37981D8D.svg: In this case, during the first uniaxial load in the x direction: .. image:: images/Object_14.svg :width: 255 :height: 49 .. _RefImage_Object_14.svg: In this case, .. image:: images/Object_15.svg :width: 255 :height: 49 .. _RefImage_Object_15.svg: , implies that .. image:: images/Object_16.svg :width: 255 :height: 49 .. _RefImage_Object_16.svg: . In this case, .. image:: images/Object_17.svg :width: 255 :height: 49 .. _RefImage_Object_17.svg: In addition, in the case of a symmetric tensile compression cycle (in plastic deformation), during the first symmetric discharge (with .. image:: images/Object_18.svg :width: 255 :height: 49 .. _RefImage_Object_18.svg: ): .. image:: images/Object_19.svg :width: 255 :height: 49 .. _RefImage_Object_19.svg: .. image:: images/Object_20.svg :width: 255 :height: 49 .. _RefImage_Object_20.svg: .. image:: images/Object_21.svg :width: 255 :height: 49 .. _RefImage_Object_21.svg: .. image:: images/Object_22.svg :width: 255 :height: 49 .. _RefImage_Object_22.svg: which corresponds well to the expected result (cf. [:ref:`bib2 `]): domain :math:`F\mathrm{=}0` centered on the origin, and radius the half-amplitude of plastic deformation. In the case of increasing traction, and if kinematic work hardening is neglected, the equations to be solved become: .. image:: images/Object_23.svg :width: 255 :height: 49 .. _RefImage_Object_23.svg: So we have to calculate the function .. image:: images/Object_24.svg :width: 255 :height: 49 .. _RefImage_Object_24.svg: , such as: .. image:: images/Object_25.svg :width: 255 :height: 49 .. _RefImage_Object_25.svg: with .. image:: images/Object_26.svg :width: 255 :height: 49 .. _RefImage_Object_26.svg: . In addition, we consider that we are in charge, so .. image:: images/Object_27.svg :width: 255 :height: 49 .. _RefImage_Object_27.svg: .. image:: images/Object_28.svg :width: 255 :height: 49 .. _RefImage_Object_28.svg: It is therefore necessary to integrate the differential equation: .. image:: images/Object_29.svg :width: 255 :height: 49 .. _RefImage_Object_29.svg: which is integrated as follows: .. image:: images/Object_30.svg :width: 255 :height: 49 .. _RefImage_Object_30.svg: => .. image:: images/Object_31.svg :width: 255 :height: 49 .. _RefImage_Object_31.svg: Method for varying the constant: .. image:: images/Object_32.svg :width: 255 :height: 49 .. _RefImage_Object_32.svg: .. image:: images/Object_33.svg :width: 255 :height: 49 .. _RefImage_Object_33.svg: .. image:: images/Object_34.svg :width: 255 :height: 49 .. _RefImage_Object_34.svg: by integrating: .. image:: images/Object_35.svg :width: 255 :height: 49 .. _RefImage_Object_35.svg: From where .. image:: images/Object_36.svg :width: 255 :height: 49 .. _RefImage_Object_36.svg: The constant :math:`K` is defined by the initial conditions: for :math:`p\mathrm{=}0`, :math:`R\mathrm{=}0` .. image:: images/Object_37.svg :width: 255 :height: 49 .. _RefImage_Object_37.svg: either .. image:: images/Object_38.svg :width: 255 :height: 49 .. _RefImage_Object_38.svg: Finally: .. image:: images/Object_39.svg :width: 255 :height: 49 .. _RefImage_Object_39.svg: So we're in charge of: :math:`\sigma \mathrm{=}{R}_{0}+R(p)` Benchmark results ---------------------- **Modeling A:** Value of :math:`\mathit{SIXX}` at the final moment: :math:`\sigma \mathrm{=}{R}_{0}+R(p)` with .. image:: images/Object_42.svg :width: 255 :height: 49 .. _RefImage_Object_42.svg: :math:`t\mathrm{=}\mathrm{8s}`, we need to find :math:`\mathit{SIXX}\mathrm{=}120\mathit{Mpa}`. To do this, we calculate :math:`R(p)` from the value of :math:`p` at the time :math:`t\mathrm{=}\mathrm{8s}`. **Modeling B:** The results obtained with VISC_CIN2_MEMO will be compared with those obtained with VISCOCHAB, at the end of pre-work hardening and after 10 cycles. The curves below highlight the memory effect (in comparison with VISC_CIN2_CHAB, which does not model it): after pre-work hardening, the imposed deformation cycles stabilize at a stress amplitude greater than that obtained without a memory effect: .. image:: images/1000000000000250000001B2D75C368820175D8E.png :width: 56 :height: 26 .. _RefImage_1000000000000250000001B2D75C368820175D8E.png: Uncertainty about the solution --------------------------- * Modeling A: analytical * B modeling: inter-comparison between VISCOCHAB and VISC_CIN2_MEMO: precision of numerical integration, estimated at less than :math:`\text{1\%}`. * C modeling: validation of behaviors in 2D AXIS; the results must be identical to those of modeling B. Bibliographical references --------------------------- 1. R5.03.04 "Elasto-visco-plastic behaviors of J.L.Chaboche". 2. J.M. PROIX "Viscoplastic behavior taking into account the non-proportionality of the load" EDF R&D-CR- AMA12 -284, 12/12/12