Reference problem ===================== Geometry --------- .. image:: images/100000000000029C00000258BC7ED10621CE11D6.png :width: 3.2681in :height: 2.7563in .. _RefImage_100000000000029C00000258BC7ED10621CE11D6.png: **Figure 1.1-a** The geometry refers to a single finite isoparametric element of square shape, the length of each edge is equal to 1. Material properties ---------------------- The mass consists of an elasto-plastic material modelled by a Drucker Prager law of behavior, associated or not. The material elasticity parameters are as follows: * Isotropic elasticity Young's modulus: :math:`E={10}^{9}\mathrm{Pa}` * Poisson's ratio: :math:`\nu \mathrm{=}\mathrm{0,3}` * Real constant density: :math:`\mathrm{\rho }=2764\mathit{kg}\mathrm{.}{m}^{-3}` * Isotropic thermal expansion coefficient: :math:`\alpha =0` The characteristics of work hardening are then given by: * Pressure dependence coefficient: :math:`\alpha =\mathrm{0,328}` * Elastic limit: :math:`{\sigma }_{y}\mathrm{=}2.11\mathrm{\times }{10}^{6}` * Ultimate constraint: :math:`{\mathrm{\sigma }}_{\mathit{ULTM}}=1.0\times {10}^{6}` **For modeling A:** Ultimate cumulative plastic deformation: :math:`{P}_{\mathrm{ULT}}=2` **For B modeling:** Ultimate cumulative plastic deformation: :math:`{P}_{\mathit{ULT}}\mathrm{=}1.225\mathrm{\times }{10}^{\mathrm{-}2}` Boundary conditions and loads ------------------------------------- A unit displacement is imposed along the :math:`y` axis on the :math:`\mathrm{CD}` segment, zero along the :math:`y` axis on the :math:`\mathrm{AB}` segment and zero along the :math:`x` axis on the :math:`\mathrm{AD}` segment. In this test case, concerning modeling A, we simulate a case of perfect plasticity with the two Drucker-Prager behavior laws in associated and non-associated conditions to verify the computational consistency of the results. To do this, simply take large values for :math:`{P}_{\mathit{ULT}}`.