Modeling I ============== Characteristics of modeling ----------------------------------- Simulation at the hardware point. The objective is to validate the compatibility of CALC_ESSAI_GEOMECA with the CSSM behavior model. To do this, several drained cyclic shear tests with imposed displacement ESSAI_CISA_DR_C_D are carried out. The number of cycles applied for ten distortion amplitudes :math:`\gamma=2\varepsilon_{xy}\in [10^{-6};10^{-2}]` is three; the confinement pressure is equal to :math:`200` kPa; The convergence criterion is :math:`10^{-10}`. The parameters for model CSSM are given in :numref:`v6.07.112-table_parametres_CSSM`. .. _v6.07.112-table_parametres_CSSM: .. list-table:: Paramètres du modèle MCC utilisés dans la modélisation I. *-**Intervention** - **Appellation** - **Definition** - **Symbol** - **Value** * - Elasticity - | *BulkModulus* | *ShearModulus* | *ShearModulusRatio* - | Total compressibility module | Total shear modulus | Ratio of the shear modulus of component 1 to the total shear modulus - |:math: `K` |:math: `\ mu` |:math: `\ rho` - | 516 MPa | 238 MPa | 0.1 * - Component 1 - | *critstateSlope* | *initCritPress* | *IncoplastIndex* | *IsoHardRatio* | *isoHardIndex* - | Critical state slope | Initial critical pressure | Plastic incompressibility index | Homothetic reduction ratio of the initial elasticity domain | Hardening index by homothetic enlargement of the initial elasticity domain - |:math: `M` |:math: `p_ {c0} ` |:math: `\ beta` |:math: `\ eta` |:math: `\ omega` - |:math: `1.38` |:math: `100` kPa |:math: `30` |:math: `0` |:math: `32` * - Component 2 - | *HypDistortion* | *HyperExponent* | *miNcritPress* - | Reference distortion of the "modified hyperbolic" relationship | Curvature parameter for the "modified hyperbolic" relationship | Minimum pressure at which the critical state is attainable - |:math: `\ gamma_ {\ mathrm {hyp}}` |:math: `n_ {\ mathrm {hyp}} ` |:math: `C` - |:math: `2.10^ {-4} ` |:math: `0.78` |:math: `448` kPa .. How to get the gray box here-under .. **Note** With the parameters of :numref:`v6.07.112-table_parametres_CSSM`, the initial elastic limit in isotropic compression is :math:`2p_{c0}(1-\eta)=200` kPa (see [:ref:`r7.01.44 `]). Thus, the state of the stresses, before applying shear, is located at the limit of the initial elasticity domain. of the model. Tested sizes and results ------------------------------ Two non-regression tests are carried out on component SIXY at distortion amplitudes :math:`\gamma` equal to :math:`10^{-6}` and :math:`10^{-2}` after having imposed the three loading cycles. .. list-table:: *-**Distortion amplitude** - **Aster code** * - :math:`10^{-6}` - :math:`-237.9999955384302` Not * - :math:`10^{-2}` - :math:`-165087.2891707449` Not :numref:`v6.07.112-modelisation_I_hysteresis` shows hysteresis cycles. Positive work hardening is observed, which stabilizes during the three cycles imposed at the same level of distortion. The :numref:`v6.07.112-modelisation_I_mu_secant` and :numref:`v6.07.112-modelisation_I_amortissement` trace the changes in the standardized secant shear modulus and hysteretic damping (reduced damping). These are comparable to the predictions of the Hujeux and Iwan models. .. _v6.07.112-modelisation_I_hysteresis: .. figure:: images/modelisation_I_hysteresis.png :align: center :width: 600 Shear stress responses (Pa). .. _v6.07.112-modelisation_I_mu_secant: .. figure:: images/modelisation_I_mu_secant.png :align: center :width: 600 Evolution of the normalized secant shear modulus. .. _v6.07.112-modelisation_I_amortissement: .. figure:: images/modelisation_I_amortissement.png :align: center :width: 600 Evolution of hysteretic damping.