Modeling A ============== Characteristics of modeling ----------------------------------- Simulation at the hardware point. Tested sizes and results ------------------------------ Charging path 1 (ESSAI_TRIA_DR_M_D) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The solutions are post-processed at the single point of the model and compared to references GEFDYN in terms of equivalent Von Mises stress :math:`Q` and volume deformation :math:`{\mathrm{ϵ}}_{v}` :math:`Q=\sqrt{\frac{3}{2}{\sigma }^{d}\mathrm{:}{\sigma }^{d}}` .. csv-table:: "**Identification**", "**Reference type**", "**Reference value**", "**Tolerance**" ":math:`{\mathrm{\epsilon }}_{\mathit{zz}}=1\text{\%}` ", "'SOURCE_EXTERNE'", "117640 Pa", "2. %" ":math:`{\mathrm{\epsilon }}_{\mathit{zz}}=2\text{\%}` ", "'SOURCE_EXTERNE'", "157072 Pa", "2. %" ":math:`{\mathrm{\epsilon }}_{\mathit{zz}}=5\text{\%}` ", "'SOURCE_EXTERNE'", "200850 Pa", "1. %" ":math:`{\mathrm{\epsilon }}_{\mathit{zz}}=10\text{\%}` ", "'SOURCE_EXTERNE'", "207649 Pa", "1. %" ":math:`{\mathrm{\epsilon }}_{\mathit{zz}}=20\text{\%}` ", "'SOURCE_EXTERNE'", "185854 Pa", "1. %" :math:`{\varepsilon }_{v}\mathrm{=}\mathit{tr}(\varepsilon )` .. csv-table:: "**Identification**", "**Reference type**", "**Reference value**", "**Tolerance**" ":math:`{\mathrm{\epsilon }}_{\mathit{zz}}=1\text{\%}` ", "'SOURCE_EXTERNE'", "0.382% ", "2. %" ":math:`{\mathrm{\epsilon }}_{\mathit{zz}}=2\text{\%}` ", "'SOURCE_EXTERNE'", "0.434", "2. %" ":math:`{\mathrm{\epsilon }}_{\mathit{zz}}=10\text{\%}` ", "'SOURCE_EXTERNE'", "-1.07% ", "3. %" ":math:`{\mathrm{\epsilon }}_{\mathit{zz}}=20\text{\%}` ", "'SOURCE_EXTERNE'", "-3.191% ", "5. %" Charging path 2 (ESSAI_TRIA_ND_M_D) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The solutions are post-treated at the single point of the model and compared to references GEFDYN. in terms of equivalent Von Mises stress :math:`Q` and isotropic effective pressure :math:`P\text{'}`. :math:`Q\mathrm{=}\sqrt{\frac{3}{2}{\sigma }^{d}\mathrm{:}{\sigma }^{d}}` .. csv-table:: "**Identification**", "**Reference type**", "**Reference value**", "**Tolerance**" ":math:`{\mathrm{\epsilon }}_{\mathit{zz}}=0.1\text{\%}` ", "'SOURCE_EXTERNE'", "31547 Pa", "3. %" ":math:`{\mathrm{\epsilon }}_{\mathit{zz}}=0.2\text{\%}` ", "'SOURCE_EXTERNE'", "40129 Pa", "2. %" ":math:`{\mathrm{\epsilon }}_{\mathit{zz}}=0.5\text{\%}` ", "'SOURCE_EXTERNE'", "51937 Pa", "1. %" ":math:`{\mathrm{\epsilon }}_{\mathit{zz}}=1.\text{\%}` ", "'SOURCE_EXTERNE'", "68286 Pa", "1. %" ":math:`{\mathrm{\epsilon }}_{\mathit{zz}}=2.\text{\%}` ", "'SOURCE_EXTERNE'", "1103161 Pa", "1. %" :math:`P\text{'}=\frac{\mathit{tr}(\mathrm{\sigma }\text{'})}{3}` .. csv-table:: "**Identification**", "**Reference type**", "**Reference value**", "**Tolerance**" ":math:`{\mathrm{\epsilon }}_{\mathit{zz}}=0.1\text{\%}` ", "'SOURCE_EXTERNE'", "138887 Pa", "1. %" ":math:`{\mathrm{\epsilon }}_{\mathit{zz}}=0.2\text{\%}` ", "'SOURCE_EXTERNE'", "133789 Pa", "1. %" ":math:`{\mathrm{\epsilon }}_{\mathit{zz}}=0.5\text{\%}` ", "'SOURCE_EXTERNE'", "124952 Pa", "1. %" ":math:`{\mathrm{\epsilon }}_{\mathit{zz}}=1.\text{\%}` ", "'SOURCE_EXTERNE'", "136801 Pa", "1. %" ":math:`{\mathrm{\epsilon }}_{\mathit{zz}}=2.\text{\%}` ", "'SOURCE_EXTERNE'", "185971 Pa", "1. %" Charging path 3 (ESSAI_TRIA_ND_C_F) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The solutions are post-treated at the single point of the model and compared to GEFDYN references in terms of isotropic effective pressure :math:`P\text{'}` :math:`P\text{'}=\frac{\mathit{tr}(\mathrm{\sigma }\text{'})}{3}` .. csv-table:: "**Identification**", "**Reference type**", "**Reference value**", "**Tolerance**" ":math:`t=10.s` ", "'SOURCE_EXTERNE'", "80193. Not", "1. %" ":math:`t\mathrm{=}30.s` ", "'SOURCE_EXTERNE'", "74078. Not", "1. %" ":math:`t\mathrm{=}50.s` ", "'SOURCE_EXTERNE'", "66250. Not", "1. %" ":math:`t\mathrm{=}70.s` ", "'SOURCE_EXTERNE'", "52999 Pa", "2. %" ":math:`t=84.8s` ", "'SOURCE_EXTERNE'", "45672. Not", "2. %" Charging path 4 (ESSAI_TRIA_DR_C_D) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A non-regression test is carried out on the equivalent stress of Von Mises :math:`Q` and of volume deformation :math:`{\mathrm{ϵ}}_{\mathit{vol}}`. :math:`Q=\sqrt{\frac{3}{2}{\sigma }^{d}\mathrm{:}{\sigma }^{d}}` .. csv-table:: "**Identification**", "**Reference type**", "**Reference value**", "**Tolerance**" ":math:`t=10.s` ", "'NON_REGRESSION'", "-15.57654 E+04 Pa", "0.0001%" ":math:`t=30.s` ", "'NON_REGRESSION'", "4.24744 E+04 Pa", "0.0001%" ":math:`t=50.s` ", "'NON_REGRESSION'", "-15.39714 E+04 Pa", "0.0001%" :math:`{ϵ}_{\mathit{vol}}` .. csv-table:: "**Identification**", "**Reference type**", "**Reference value**", "**Tolerance**" ":math:`t=10.s` ", "'NON_REGRESSION'", "4.33281931383E-03"," 0.0001%" ":math:`t=30.s` ", "'NON_REGRESSION'", "-5.89630135815E-04"," 0.0001%" ":math:`t=50.s` ", "'NON_REGRESSION'", "8.75197203863E-03"," 0.0001%" Charging path 5 (ESSAI_TRIA_DR_C_D) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A non-regression test is carried out on the equivalent stress of Von Mises :math:`Q` and of volume deformation :math:`{\mathrm{ϵ}}_{\mathit{vol}}`. :math:`Q\mathrm{=}\sqrt{\frac{3}{2}{\sigma }^{d}\mathrm{:}{\sigma }^{d}}` .. csv-table:: "**Identification**", "**Reference type**", "**Reference value**", "**Tolerance**" ":math:`t=20.s` ", "'NON_REGRESSION'", "-15.58495 E+04 Pa", "0.0001%" ":math:`t=40.s` ", "'NON_REGRESSION'", "3.66029 E+04 Pa", "0.0001%" ":math:`t=50.s` ", "'NON_REGRESSION'", "-14.29862 E+04 Pa", "0.0001%" :math:`{ϵ}_{\mathit{vol}}` .. csv-table:: "**Identification**", "**Reference type**", "**Reference value**", "**Tolerance**" ":math:`t=20.s` ", "'NON_REGRESSION'", "4.33090139425 E-3"," 0.0001%" ":math:`t=40.s` ", "'NON_REGRESSION'", "3.24057746269 E-3"," 0.0001%" ":math:`t=50.s` ", "'NON_REGRESSION'", "9.73288861173 E-3"," 0.0001%" Charging path 6 (ESSAI_CISA_DR_C_D) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A non-regression test is carried out on the constraint :math:`{\mathrm{\sigma }}_{\mathit{xy}}` at various times during the loading. :math:`{\sigma }_{\mathit{xy}}` .. csv-table:: "**Identification**", "**Reference type**", "**Reference value**", "**Tolerance**" ":math:`t=10.s` ", "'NON_REGRESSION'", "-1.002427E+04 Pa", "0.0001%" ":math:`t=30.s` ", "'NON_REGRESSION'", "1.00516E+04 Pa", "0.0001%" ":math:`t=50.s` ", "'NON_REGRESSION'", "-1.000155E+04 Pa", "0.0001%" Charging path 7 (ESSAI_OEDO_DR_C_F) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A non-regression test is carried out on the volume deformation :math:`{ϵ}_{\mathit{vol}}` and the stress :math:`{\sigma }_{\mathit{xx}}` at various times of loading. :math:`{ϵ}_{\mathit{vol}}` .. csv-table:: "**Identification**", "**Reference type**", "**Reference value**", "**Tolerance**" ":math:`t=10.s` ", "'NON_REGRESSION'", "8.48266637218E-04"," 0.0001%" ":math:`t=50.s` ", "'NON_REGRESSION'", "1.6871423233218E-03"," 0.0001%" ":math:`t=90.s` ", "'NON_REGRESSION'", "2.14894009601E-03"," 0.0001%" :math:`{\sigma }_{\mathit{xx}}` .. csv-table:: "**Identification**", "**Reference type**", "**Reference value**", "**Tolerance**" ":math:`t\mathrm{=}10.s` ", "'NON_REGRESSION'", "49721.6863437 Pa", "0.0001%" ":math:`t=50.s` ", "'NON_REGRESSION'", "53981.1605469 Pa", "0.0001%" ":math:`t=90.s` ", "'NON_REGRESSION'", "56319.3772981 Pa", "0.0001%" Charging path 8 (ESSAI_ISOT_DR_C_F) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The solutions are post-treated at the single point of the model and the values of the volume deformation :math:`{\mathrm{ϵ}}_{\mathit{vol}}` are compared with the results of the ssnv204a test case at different times of loading. :math:`{\mathrm{ϵ}}_{\mathit{vol}}` .. csv-table:: "**Identification**", "**Reference type**", "**Reference value**", "**Tolerance**" ":math:`t=10.s` ", "'AUTRE_ASTER'", "0.01356660"," 0.1%" ":math:`t=30.s` ", "'AUTRE_ASTER'", "0.00091215"," 0.1%" ":math:`t=50.s` ", "'AUTRE_ASTER'", "0.01591635"," 0.1%" Charging path 9 (ESSAI_TRIA_ND_C_D) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A non-regression test is carried out on the average effective stress :math:`P\text{'}`, the equivalent Von Mises stress :math:`Q` and the plastic volume deformation :math:`{\mathrm{ϵ}}_{\mathit{vol}}^{\mathit{plas}}`. :math:`P\text{'}=\frac{\mathit{trace}\left(\mathrm{\sigma }\text{'}\right)}{3}` .. csv-table:: "**Identification**", "**Reference type**", "**Reference value**", "**Tolerance**" ":math:`t=20.s` ", "'NON_REGRESSION'", "10064.1486965Pa", "0.0001%" ":math:`t=110.s` ", "'NON_REGRESSION'", "25713.2501603Pa", "0.0001%" :math:`Q\mathrm{=}\sqrt{\frac{3}{2}{\sigma }^{d}\mathrm{:}{\sigma }^{d}}` .. csv-table:: "**Identification**", "**Reference type**", "**Reference value**", "**Tolerance**" ":math:`t=20.s` ", "'NON_REGRESSION'", "-7514.28427045Pa", "0.0001%" ":math:`t=110.s` ", "'NON_REGRESSION'", "-29890.4822779"," 0.0001%" :math:`{\mathrm{ϵ}}_{\mathit{vol}}^{\mathit{plas}}` .. csv-table:: "**Identification**", "**Reference type**", "**Reference value**", "**Tolerance**" ":math:`t=20.s` ", "'NON_REGRESSION'", "-0.000189977948884"," 0.0001%" ":math:`t=110.s` ", "'NON_REGRESSION'", "-0.000555199619402"," 0.0001%" notes --------- The reference values GEFDYN are already used in three existing tests, which correspond to the first three loading paths: * path 1: ssnv197 [:external:ref:`V6.04.197 `], modeling A * path 2: wtnv133 [:external:ref:`V7.31.133 `], modeling A * path 3: wtnv134 [:external:ref:`V7.31.134 `], B modeling