F modeling ============== Characteristics of modeling ----------------------------------- Simulation 1 ~~~~~~~~~~~~ This is a thermomechanical test with zero imposed deformation along axis :math:`x`. The test is performed on an element of BARRE with the STAT_NON_LINE command. The temperature varies from :math:`{T}_{0}=20°C` to :math:`{T}_{\mathrm{max}}=100°C`. The material is able to be plasticized. The transition consists of NCAL steps. The reference temperature is :math:`{T}_{\mathrm{ref}}=20°C`. Simulation 2 ~~~~~~~~~~~~ It's about looping over NCAL mechanical calculations. For each calculation :math:`i`, the imposed load consists of the thermal deformation :math:`{\varepsilon }_{\mathrm{xx}}=-{\varepsilon }_{\mathrm{th}}=-\alpha (T)({T}_{i}-{T}_{\mathrm{Ref}})`. The initial load consists of the deformations, stresses and internal variables from the previous mechanical calculation. Material properties ---------------------- The law of behavior tested is' PINTO_MENEGOTTO 'documented in doc [:ref:`R5.03.09 `]. This law is an elasto-plastic uniaxial isothermal law modeling the response of steel reinforcements in reinforced concrete under cyclic loading. The elastic parameters are as follows: :math:`E(T)`, :math:`\nu (T)`, and :math:`\alpha (T)` The elastoplastic parameters are as follows: :math:`{\sigma }_{y}^{0}`, :math:`{\varepsilon }_{u}`, :math:`{\sigma }_{u}`, :math:`{\varepsilon }_{h}`, :math:`b`,, :math:`\mathrm{R0}`, :math:`\mathrm{a1}`, :math:`\mathrm{a2}`,, :math:`L/D`, :math:`\mathrm{a6}`,,,,,,,,,,,, :math:`c` :math:`a` Values of the parameters used: .. csv-table:: "Settings", ":math:`T=20°C` "," :math:`T=500°C`" ":math:`E(T)` "," :math:`2.1\mathrm{E11}` Pa", ":math:`1.E11` Pa" ":math:`\nu (T)` "," :math:`0.` "," :math:`0.`" ":math:`\alpha (T)` "," :math:`1.E-5` :math:`{K}^{-1}` "," :math:`2.E-5` :math:`{K}^{-1}`" +--------------------------+-----------------++-------------------+-------------+ |Parameters ||Parameters | +--------------------------+-----------------++-------------------+-------------+ |:math:`{\sigma }_{y}^{0}` |:math:`2.E8` Pa ||:math:`\mathrm{a1}`|:math:`18.5` | +--------------------------+-----------------++-------------------+-------------+ |:math:`{\varepsilon }_{u}`|:math:`3.E-2` ||:math:`\mathrm{a2}`|:math:`0.15` | +--------------------------+-----------------++-------------------+-------------+ |:math:`{\sigma }_{u}` |:math:`2.58E8` Pa||:math:`L/D` |:math:`4.9` | +--------------------------+-----------------++-------------------+-------------+ |:math:`{\varepsilon }_{h}`|:math:`0.0023` ||:math:`\mathrm{a6}`|:math:`620.` | +--------------------------+-----------------++-------------------+-------------+ |:math:`b` |:math:`0.01` ||:math:`c` |:math:`0.5` | +--------------------------+-----------------++-------------------+-------------+ |:math:`\mathrm{R0}` |:math:`20.` ||:math:`a` |:math:`0.008`| +--------------------------+-----------------++-------------------+-------------+ Tested sizes and results ------------------------------ Validation is carried out by comparing the fields calculated at each step of the transient on the one hand and the result of a mechanical calculation on the other hand. The command used is TEST_TABLE which tests the reference value against the calculated value. The reference value being the field component extracted at a given time :math:`i` from the first thermo-mechanical simulation performed over NCAL times. The calculated value is the one obtained at the end of the mechanical calculation :math:`i+1` of the loop on the NCAL. .. csv-table:: "Result at order number :math:`i` ", "Name of the tested parameter", "Name of the tested parameter", "Reference type", "Tolerance" "RESU_i "," NOM_PARA ", "", "VALE_REF "," TOLE" "RESU_19 ", "N", "NON_REGRESSION ", "-2.58E8"," 0.1%" "RESU_19 ", "V4"," NON_REGRESSION ", "-9.6E-2", "" "RESU_19 ", "V5"," NON_REGRESSION ", "-7.08E-3", ""