1. Reference problem#

1.1. Geometry#

The geometry generated automatically in the macro command SIMU_POINT_MAT [U4.51.12] is unique and simple: it is a tetrahedron with side 1, at whose nodes linear relationships are applied to obtain a homogeneous state of stress and deformation.

1.2. Material properties#

Material characteristics are defined using the DEFI_MATERIAU command. The elastic characteristics are:

  • \(E=32000\mathrm{MPa}\) (except for D-modeling, see table below)

  • \(\nu =0.2\),

The other parameters describing the laws were chosen from Code_Aster test cases. The following table summarizes all the Code_Aster laws considered and the associated parameters:

Modeling

Code_Aster laws of behavior

parameters retained

test used for the choice of parameters

A

BETON_RAG

COMP_BETON = “ENDO_FLUA”,

ENDO_MC = 1.95, ENDO_MT = 1.95, = 2.00, = 2.00, = 2.00, ENDO_SIGUC = 35.00 MPa, ENDO_SIGUT = 3.18 MPa, 1891, p = 0.15, # Units: 0.15, #, # Units,, and .Day ENDO_DRUPRA MPa MPa FLUA_SPH_KR = 200000.0, FLUA_SPH_KI = 20000.0, FLUA_SPH_NR = 20000.0, = 350000.0, = 350000.0, = 350000.0, = 350000.0, = 350000.0, = 350000.0, FLUA_SPH_NI FLUA_DEV_KR FLUA_DEV_KI FLUA_DEV_NR FLUA_DEV_NI

Unrealistic values, for the purposes of the computer verification test.

B

BETON_UMLV

K_RS = 2.0E5 (MPa)

ETA_RS = 4.0E10 (MPa /s)

K_IS = 5.0E4 (MPa)

ETA_IS = 1.0E11 (MPa /s)

K_RD = 5.0E4 (/s) K_RS = 1.0 MPa

ETA_RD E10 (MPa /s)

ETA_ID = 1.0E11 (MPa /s)

Parameters identical to test SSNV163A

C

BETON_BURGER

K_RS = 2.0E5 (MPa)

ETA_RS = 4.0E10 (MPa /s)

ETA_IS = 1.0E11 (MPa /s)

K_RD = 5.0E4 (MPa)

ETA_RD = 1.0E10 (/s) MPa

ETA_ID = 1.0E11 (MPa /s)

ETA_FD = 0. (Mpa/s)

KAPPA = 3.0E-3

Parameters identical to test SSNV163D

D

ENDO_LOCA_EXP

E= 34129 (Mpa)

KAPPA = 5.84194

P = 5.84194 P = 2.0

SIGC = 3.033958 (Mpa)

SIG0 = 0.827102 (Mpa)

REST_RIGIDITE = 8532.28

Parameters identical to test SSNV261A

1.3. Boundary conditions and loads#

1.3.1. Characteristics of the loading path#

The proposed loading causes each component of the tensor to vary in a decoupled manner from the deformations in successive steps. A cyclic charge-discharge path is proposed by covering the states of traction and compression as well as an inversion of the signs of shear in order to test a wide range of values.

Schematically, it follows a course on 8 segments \(\mathrm{[}O\mathrm{-}A\mathrm{-}B\mathrm{-}C\mathrm{-}O\mathrm{-}C’\mathrm{-}B’\mathrm{-}A’\mathrm{-}O\mathrm{]}\) where the second part of the path \(\mathrm{[}O\mathrm{-}C’\mathrm{-}B’\mathrm{-}A’\mathrm{-}O\mathrm{]}\) is symmetric with respect to the origin of the first \(\mathrm{[}O\mathrm{-}A\mathrm{-}B\mathrm{-}C\mathrm{-}O\mathrm{]}\).

1.3.2. Application of requests#

We come back to the study of a material point (using the macro-command SIMU_POINT_MAT [U4.51.12]) by stressing an element in a homogeneous manner by imposing in \(\mathrm{3D}\), the 6 components of the deformation tensor:

\(\stackrel{ˉ}{\varepsilon }\mathrm{=}\left[\begin{array}{ccc}{\varepsilon }_{\mathit{xx}}& {\varepsilon }_{\mathit{xy}}& {\varepsilon }_{\mathit{xz}}\\ {\varepsilon }_{\mathit{xy}}& {\varepsilon }_{\mathit{yy}}& {\varepsilon }_{\mathit{yz}}\\ {\varepsilon }_{\mathit{xz}}& {\varepsilon }_{\mathit{yz}}& {\varepsilon }_{\mathit{zz}}\end{array}\right]\)

For a more general description, the imposed deformation tensor will be decomposed into a hydrostatic and deviatoric part on shear bases:

\(\stackrel{ˉ}{\varepsilon }\mathrm{=}\left[\begin{array}{ccc}{\varepsilon }_{\mathit{xx}}& {\varepsilon }_{\mathit{xy}}& {\varepsilon }_{\mathit{xz}}\\ {\varepsilon }_{\mathit{xy}}& {\varepsilon }_{\mathit{yy}}& {\varepsilon }_{\mathit{yz}}\\ {\varepsilon }_{\mathit{xz}}& {\varepsilon }_{\mathit{yz}}& {\varepsilon }_{\mathit{zz}}\end{array}\right]\mathrm{=}p\left[\begin{array}{ccc}1& 0& 0\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]+{d}_{1}\left[\begin{array}{ccc}1& 0& 0\\ 0& \mathrm{-}1& 0\\ 0& 0& 1\end{array}\right]+{d}_{2}\left[\begin{array}{ccc}0& 0& 0\\ 0& 1& 0\\ 0& 0& \mathrm{-}1\end{array}\right]+\left[\begin{array}{ccc}0& {\varepsilon }_{\mathit{xy}}& {\varepsilon }_{\mathit{xz}}\\ {\varepsilon }_{\mathit{xy}}& 0& {\varepsilon }_{\mathit{yz}}\\ {\varepsilon }_{\mathit{xz}}& {\varepsilon }_{\mathit{yz}}& 0\end{array}\right]\) in \(\mathrm{3D}\)

1.3.3. Description of the imposed deformation path#

The path applied is described in the table below, the deformation values applied are calibrated with respect to the elastic modulus:

Segment number

1

2

2

3

3

3

4

5

6

7

8

Segment

\(O-A\)

\(A-B\)

\(B-C\)

\(O\)

\(C’\)

\(B’\)

\(A’\)

\(O\)

\({\varepsilon }_{\mathit{xx}}\mathrm{\times }E\)

787.5

1050

1050

350

350

0

-350

-1050

-787.5

0

\({\varepsilon }_{\mathit{yy}}\mathrm{\times }E\)

525.0

-175

-175

-350

-350

175

525

0

\({\varepsilon }_{\mathit{zz}}\mathrm{\times }E\)

262.5

700

700

-525

-525

525

-700

-262.5

0

\({\varepsilon }_{\mathit{xy}}\mathrm{\times }E\mathrm{/}(1+\nu )\)

700

350

350

1050

1050

-1050

-350

-700

0

\({\varepsilon }_{\mathit{xz}}\mathrm{\times }E\mathrm{/}(1+\nu )\)

-350

350

350

700

700

0

-700

700

0

\({\varepsilon }_{\mathit{yz}}\mathrm{\times }E\mathrm{/}(1+\nu )\)

0

700

-350

-350

0

350

-700

0

0

\(P\)

525

525

525

-175

-175

-525

-525

0

\(\mathrm{d1}\)

262.5

525

525

525

0

-525

-525

-262.5

0

\(\mathrm{d2}\)

262.5

-175

-175

350

350

0

-350

175

-262.5

0

This path is illustrated by the following graph:

_images/1000000000000318000002630F3FC811B946DA5C.png

1.4. Initial conditions#

Zero stresses and deformations.