1. Reference problem#

1.1. Geometry#

The geometry (generated automatically in the macro command SIMU_POINT_MAT [U4.51.12]) is unique and simple: in \(\mathrm{3D}\) it is a tetrahedron with side 1, and in \(\mathrm{2D}\) it is a triangle with side 1, at whose nodes linear relationships are applied to obtain a state of homogeneous stress and deformation.

1.2. Material properties#

Material characteristics are defined for each behavior using the DEFI_MATERIAU command. The elastic characteristics and the elastic limit selected are those of standard 16 MND5 steel:

  • \(E=200000\mathrm{MPa}\), \(\nu =0.3\), \({\sigma }_{y}=437\mathrm{MPa.}\)

The other parameters describing the laws were chosen from Code_Aster test cases. The following two tables summarize all the Code_Aster laws considered and the associated parameters

Model.

viscoplastic laws of ASTER

parameters retained

test selected for the choice of parameters

A

LEMAITRE

m = 5.6

Kinv=1/K= 3.2841e-4

n = 11

Test ASTER SSNA01A

B

VISC_CIN1_CHAB

    SY = 437.0;

    Rinf = 758.0;

    b = 2.3;

    Cinf = 63767.0

    Gamma0 = 341.0

1/m = 0
Kinv=1/K= 3.2841e-4

.. code::

    n = 11

work hardening: data 16 MND5 other parameters: ssnv101c

C

VISC_CIN2_CHAB

SY = 437.0;

Rinf = 758.0;

b = 2.3;

C1inf = 63767.0/2.0

C2inf = 63767.0/2.0

Gam1 = 341.0

Gam2 = 341.0

1/m = 0

1/K= 3.2841e-4

n = 11

Crouching data 16 MND5 other parameters ssnv101c

Kinematic choice X1+X2= Xde VMIS_CIN1_CHAB

D

VISC_ENDO_LEMA

SY=0.0

N=12.0

UN_SUR_M=1/9.0

UN_SUR_K=1/2110.0

R_D=6.3

A_D=3191.0

E

VISC_TAHERI

SY = 437.0; Sinf = 758.0;

alpha = 0.3;

m = 0.1;

a = 312.0;

b = 30.0;

c1 = -0.012;

cinf = 0.065

Test ASTER SSNP101B

F

VISC_ISOT_LINE

SY=437 MPa, DSY =2024 Mpa

SIGM_0 =6176. EPSI_0 =3.31131121483e13 M=6.76

SSNL129 test for part VISC_SINH

Material data 16 MND5pour work-hardening

G

VISC_ISOT_TRAC

tensile curve at 100°C of 16 MND5

SIGM_0 =6176. EPSI_0 =3.31131121483e13 M=6.76

SSNL129 test for part VISC_SINH

Material data 16 MND5pour work hardening

H

VISC_CIN2_MEMO

R0=SY = 437.0;

Q0 = 758.0-437.0;

Qm=Q0+100

Mu=10

Eta=0.5

b = 2.3;

C1inf = 63767.0/2.0

C2inf = 63767.0/2.0

Gam1 = 341.0

Gam2 = 341.0

1/m =0

1/K= 3.2841e-4

n = 11

Cinematic choice X1+X2= Xde VMIS_CIN1_CHAB.

Memory effect.

I

VISCOCHAB

SY = 437.0;

Rinf = 758.0;

b = 2.3;

C1inf = 63767.0/2.0

C2inf = 63767.0/2.0

Gam1 = 341.0

Gam2 = 341.0

1/m = 0

1/K= 3.2841e-4

n = 11

Q0 = 758.0-437.0;

Qm=Q0+100

Mu=10

Eta=0.5

Work harden:Data 16 MND5 other parameters ssnv101c

Kinematic choice X1+X2= Xde VMIS_CIN1_CHAB Memory effect.

J

MONOCRISTAL

viscoplastic laws of ASTER

Plastic parameters from SSNV171.Orthotropic parameters from SSLV120

K

VMIS_JOHN_COOK

YOUNG = 124000.e6;

POISSON = 0.34;

A=0.34; A=90.e6

B=292.e6

C=0.025

N_ PUIS =0.31

M_ PUIS =0.31 M_ =0.34; A=0.34; A=90.e6 B=292.e6 B=292.e6 C=0.025 N_ =0.31 M_ =0.31

EPSI0

TROOM =298.0

TMELT =1083.0

L

HAYHURST

YOUNG = 145000. ;

POISSON = 0.34;

BIGA =9.7E-8

DELTA1 =1.0, DELTA2 =0.0, BIGA =9.707593E-08, H1ST=0.33, H2ST=1.0, K=9.69

H1=3.E4, H2=3.E4, H2=3.E4, H2=3.E4, H2=3.E4, H2=3.E4, H2=3.E4, H2=3.E4, H2=3.E4, H2=3.E4, H2=3.E4, H2=3.E4, H2=3.E4, H2=3.E4, H2=3.E4, H2=-3.E4, H2=-3.E4, H2=-3.E4 SIG0 ALPHAD EPS0 11

1.3. Boundary conditions and loads#

1.3.1. Characteristics of loading paths#

Two loading paths have been defined to deal with cases \(\mathrm{3D}\) and \(\mathrm{2D}\) plan. They are common to all laws of behavior. Each of them meets the following criteria:

  • an accumulated plastic deformation, \(p\), from 4 to \(\text{5\%}\) over the entire path,

  • an increase of \(1\text{\%}\) in the cumulative plastic deformation \(p\) during a portion of the trip,

  • in the presence of viscosity, a deformation stress rate of 10-3, 10-4 and \({10}^{-5}{\text{s}}^{-1}\) respectively. These were evaluated approximately by considering an equivalent deformation of \(5\text{\%}\) over the entire journey: i.e. travel times of 50, 500 and 5000 seconds respectively for \(\text{v1}\), \(\text{v2}\) and \(\text{v3}\). The tests returned correspond to a speed of \({10}^{-5}{\text{s}}^{-1}\).

This calibration was carried out on law VMIS_ISOT_LINE, then carried over to the other laws.

The proposed loading causes each component of the deformation tensor to vary in a decoupled manner by successive step. A cyclic load-discharge path is proposed by covering the states of traction and compression as well as an inversion of the signs of shear in order to test a wide range of values.

Schematically, it follows a course on 8 segments \(\text{[O-A-B-C-O-C’-B’-A’-O]}\) where the second part of the path \(\text{[O-C’-B’-A’-O]}\) is symmetric with respect to the origin of the first \(\text{[O-A-B-C-O]}\).

1.3.2. Application of requests#

We come back to the study of a material point (using the macro-command SIMU_POINT_MAT [U4.51.12]) by soliciting an element in a homogeneous manner by imposing:

  • in \(\mathrm{3D}\), the 6 components of the deformation tensor:

\(\stackrel{ˉ}{\varepsilon }=\left[\begin{array}{ccc}{\varepsilon }_{\mathrm{xx}}& {\varepsilon }_{\mathrm{xy}}& {\varepsilon }_{\mathrm{xz}}\\ {\varepsilon }_{\mathrm{xy}}& {\varepsilon }_{\mathrm{yy}}& {\varepsilon }_{\mathrm{yz}}\\ {\varepsilon }_{\mathrm{xz}}& {\varepsilon }_{\mathrm{yz}}& {\varepsilon }_{\mathrm{zz}}\end{array}\right]\)

  • in \(\mathrm{2D}\) the three components of the tensor

\(\stackrel{ˉ}{\varepsilon }=\left[\begin{array}{cc}{\varepsilon }_{\mathrm{xx}}& {\varepsilon }_{\mathrm{xy}}\\ {\varepsilon }_{\mathrm{xy}}& {\varepsilon }_{\mathrm{yy}}\end{array}\right]\)

For a more general description, the imposed deformation tensor will be decomposed into a hydrostatic and deviatoric part on shear bases:

\(\stackrel{ˉ}{\varepsilon }=\left[\begin{array}{cc}{\varepsilon }_{\mathrm{xx}}& {\varepsilon }_{\mathrm{xy}}\\ {\varepsilon }_{\mathrm{xy}}& {\varepsilon }_{\mathrm{yy}}\end{array}\right]=p\left[\begin{array}{cc}1& 0\\ 0& 1\end{array}\right]+d\left[\begin{array}{cc}1& 0\\ 0& -1\end{array}\right]+{\varepsilon }_{\mathrm{xy}}\left[\begin{array}{cc}0& 1\\ 1& 0\end{array}\right]\) in \(\mathrm{2D}\),

\(\stackrel{ˉ}{\varepsilon }=\left[\begin{array}{ccc}{\varepsilon }_{\mathrm{xx}}& {\varepsilon }_{\mathrm{xy}}& {\varepsilon }_{\mathrm{xz}}\\ {\varepsilon }_{\mathrm{xy}}& {\varepsilon }_{\mathrm{yy}}& {\varepsilon }_{\mathrm{yz}}\\ {\varepsilon }_{\mathrm{xz}}& {\varepsilon }_{\mathrm{yz}}& {\varepsilon }_{\mathrm{zz}}\end{array}\right]=p\left[\begin{array}{ccc}1& 0& 0\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]+{d}_{1}\left[\begin{array}{ccc}1& 0& 0\\ 0& -1& 0\\ 0& 0& 0\end{array}\right]+{d}_{2}\left[\begin{array}{ccc}0& 0& 0\\ 0& 1& 0\\ 0& 0& -1\end{array}\right]+\left[\begin{array}{ccc}0& {\varepsilon }_{\mathrm{xy}}& {\varepsilon }_{\mathrm{xz}}\\ {\varepsilon }_{\mathrm{xy}}& 0& {\varepsilon }_{\mathrm{yz}}\\ {\varepsilon }_{\mathrm{xz}}& {\varepsilon }_{\mathrm{yz}}& 0\end{array}\right]\) in 3D.

1.3.3. Description of the imposed deformation path in 2D#

The path applied is described in the table below, the deformation values are calibrated with respect to the elastic modulus:

time

1

2

3

3

3

4

5

6

7

8

Charging point

\(A\)

\(B\)

\(C\)

\(O\)

\(C’\)

\(B’\)

\(A’\)

\(O\)

\(E\mathrm{.}{\varepsilon }_{\mathrm{xx}}\)

675

1350

1350

1350

0

-1350

-1350

-675

0

\(E\mathrm{.}{\varepsilon }_{\mathrm{yy}}\)

675

450

450

1350

1350

0

-1350

-450

-675

0

\(\frac{E}{(1+\nu )}{\varepsilon }_{\mathrm{xy}}\)

450

180

180

0

0

0

-180

-450

0

\(p\)

675

900

900

1350

-1350

-900

-675

0

\(d\)

0

0

0

450

450

0

0

0

This path is illustrated by the following graph:

_images/1000000000000318000002632D218E4097047B7B.png

1.3.4. Description of the imposed deformation path in 3D#

The path applied is described in the table below, the deformation values applied are calibrated with respect to the elastic modulus:

Segment number

1

2

2

3

3

3

4

5

6

7

8

Segment

\(0-A\)

\(A-B\)

\(B-C\)

\(O\)

\(C’\)

\(B’\)

\(A’\)

\(O\)

\(E\mathrm{.}{\varepsilon }_{\mathrm{xx}}\)

787.5

1050

1050

350

350

0

-350

-1050

-787.5

0

\(E\mathrm{.}{\varepsilon }_{\mathrm{yy}}\)

525.0

-175

-175

-350

-350

175

525

0

\(E\mathrm{.}{\varepsilon }_{\mathrm{zz}}\)

262.5

700

700

-525

-525

525

-700

-262.5

0

\(\frac{E}{(1+\nu )}{\varepsilon }_{\mathrm{xy}}\)

700

350

350

1050

1050

-1050

-350

-700

0

\(\frac{E}{(1+\nu )}{\varepsilon }_{\mathrm{xz}}\)

-350

350

350

700

700

0

-700

700

0

\(\frac{E}{(1+\nu )}{\varepsilon }_{\mathrm{yz}}\)

0

700

-350

-350

0

350

-700

0

0

\(p\)

525

525

525

-175

-175

-525

-525

0

\({d}_{1}\)

262.5

525

525

525

0

-525

-525

-262.5

0

\({d}_{2}\)

262.5

-175

-175

350

350

0

-350

175

-262.5

0

This path is illustrated by the following graph:

_images/1000000000000318000002630F3FC811B946DA5C.png

1.4. Initial conditions#

Zero stresses and deformations.