1. Reference problem#

1.1. Geometry#

The geometry (generated automatically in the macro command SIMU_POINT_MAT [U4.51.12]) is unique and simple: in 3D it is a tetrahedron on side 1, and in 2D it is a triangle on side 1, at whose nodes linear relationships are applied to obtain a state of homogeneous stress and deformation.

1.2. Material properties#

Material characteristics are defined for each behavior using the DEFI_MATERIAU command. The elastic and isotropic work-hardening characteristics selected are those of standard \(\mathrm{16MND5}\) steel:

  • \(E=200000\mathrm{MPa}\),

  • \(\nu =0.3\),

  • \({\sigma }_{y}=437\mathrm{MPa}\).

The other parameters describing the laws were chosen based on the ASTER test cases. The following two tables summarize all the laws of Code ASTER considered and the associated parameters:

Fashionable.

Lois Code_Aster

Parameters retained

Criteria used for the choice of parameters

A

VMIS_ISOT_LINE

\(\mathrm{SY}=437\mathrm{MPa}\), \(\mathrm{DSY}=\mathrm{2024MPa}\)

Material data \(\mathrm{16MND5}\)

B

VMIS_ISOT_TRAC

Traction curve at \(100°C\) from \(16\mathrm{MND5}\)

Material data \(\mathrm{16MND5}\)

C

VMIS_CINE_LINE

\(\mathrm{SY}=437\mathrm{MPa}\), \(\mathrm{DSY}=\mathrm{2024MPa}\)

Material data \(\mathrm{16MND5}\)

D

VMIS_ECMI_LINE

\(\mathrm{SY}=437\mathrm{MPa}\), \(\mathrm{DSY}=\mathrm{2024MPa}\) \({C}_{\mathrm{PRAG}}=1486.9\).

Material data \(\mathrm{16MND5}\)

E

VMIS_ECMI_TRAC

Traction curve at \(100°C\) from \(16\mathrm{MND5}\) \({C}_{\mathrm{PRAG}}=1486.9\).

Material data \(\mathrm{16MND5}\)

F

VMIS_CIN1_CHAB

\(\mathrm{SY}=437.0\);

\(\mathrm{Rinf}=758.0\);

\(b=2.3\);

\(\mathrm{Cinf}=63767.0\)

\(\mathrm{Gamma0}=341.0\)

work hardening: \(\mathrm{données16MND5}\) other parameters: ssnv101c

G

VMIS_CIN2_CHAB

\(\mathrm{SY}=437.0\);

\(\mathrm{Rinf}=758.0\);

\(b=2.3\);

\(\mathrm{C1inf}=63767.0/2.0\)

\(\mathrm{C2inf}=63767.0/2.0\)

\(\mathrm{Gam1}=341.0\)

\(\mathrm{Gam2}=341.0\)

Wrenchingdata

\(\mathrm{16MND5}\) other parameters ssnv101c

Kinematic choice \(\mathrm{X1}+\mathrm{X2}=X\) from VMIS_CIN1_CHAB

H

VMIS_ISOT_PUIS

\(\mathrm{SY}=437.0\);

\(\mathrm{APUI}=1.3\)

\(\mathrm{NPUI}=3.5\)

J

MOHR_COULOMB

\(E=\mathrm{619,3}\mathit{MPa}\)

\(\nu =\mathrm{0,3}\)

\(\varphi =33°\)

\(\psi =27°\)

\({c}_{0}=1\mathit{MPa}\)

Hostun sand

K

MohrCoulombAS

\(E=619.3\mathit{MPa}\)

\(\mathrm{\nu }=0.3\)

\(C=1\mathit{kPa}\)

\(\mathrm{\varphi }=33°\)

\(\mathrm{\psi }=27°\)

\({\mathrm{\theta }}_{T}=20°\)

\(a=0.25C/\mathrm{tan}(\mathrm{\varphi })\)

\({h}_{C}=0\)

Hostun sand

L

NLH_CSRM

YoungModulus=7.0E9

PoissonRatio=0.3 IsocompLaslim=50.0E6 IsotenseLaslim=0.1E6 MCCSlopeCSL =0.5 NLHIndex =1.0 MBigocritCoef=10.0 AbigocritCoef=10.0 AbigocritCoef=0.75 IncompIndex=0.75 IncompIndex=15.0 Tau=2.0e2 PerzynaExpo=2.0 NLHModulusP =7.0e9/2.5 NLHModulusV =0.01*7.0e9

Fictional

1.3. Boundary conditions and loads#

1.3.1. Characteristics of loading paths#

Two loading paths have been defined to deal with 3D and 2D plane cases. They are common to all laws of behavior. Each of them meets the following criteria:

  • an accumulated plastic deformation, \(p\), of 4 to 5% over the entire path,

  • a 1% increase in \(p\) during a portion of the trip,

This calibration was carried out on law VMIS_ISOT_LINE, then carried over to the other laws.

The proposed loading causes each component of the deformation tensor to vary in a decoupled manner by successive step. A cyclic load-discharge path is proposed by covering the states of traction and compression as well as an inversion of the signs of shear in order to test a wide range of values.

Schematically, it follows a course over 8 segments \([O-A-B-C-O-C’-B’-A’-O]\) where the second part of the path [O-C”-B”-A”-O] is symmetric with respect to the origin of the first \([O-A-B-C-O]\).

1.3.2. Application of requests#

We come back to the study of a material point (using the macro-command SIMU_POINT_MAT) by soliciting an element in a homogeneous manner by imposing:

  • in 3D, the 6 components of the deformation tensor:

    _images/Object_1.svg
  • in 2D the three components of the tensor:

    _images/Object_2.svg

For a more general description, the imposed deformation tensor will be decomposed into a hydrostatic and deviatoric part on shear bases:

  • _images/Object_3.svg

in 2D,

  • _images/Object_4.svg

In 3D

1.3.3. Description of the imposed deformation path in 2D#

The path applied is described in the table below, the deformation values are calibrated with respect to the elastic modulus:

Time

1

2

3

3

3

4

5

6

7

8

Charging point

\(A\)

\(B\)

\(C\)

\(O\)

\(C’\)

\(B’\)

\(A’\)

\(O\)

\({\varepsilon }_{\mathit{xx}}\mathrm{\times }E\)

675

1350

1350

1350

0

-1350

-1350

-675

0

\({\varepsilon }_{\mathit{yy}}\mathrm{\times }E\)

675

450

450

1350

1350

0

-1350

-450

-675

0

\({\varepsilon }_{\mathit{xy}}\mathrm{\times }E\mathrm{/}(1+\nu )\)

450

180

180

0

0

0

-180

-450

0

\(P\)

675

900

900

1350

-1350

-900

-675

0

\(D\)

0

0

0

450

450

0

0

0

This path is illustrated by the following graph:

_images/1000000000000318000002632D218E4097047B7B.png

1.3.4. Description of the imposed deformation path in 3d#

The path applied is described in the table below, the deformation values applied are calibrated with respect to the elastic modulus:

Segment number

1

2

2

3

3

3

4

5

6

7

8

Segment

\(0-A\)

\(A-B\)

\(B-C\)

\(O\)

\(C’\)

\(B’\)

\(A’\)

\(O\)

\({\varepsilon }_{\mathit{xx}}\mathrm{\times }E\)

787.5

1050

1050

350

350

0

-350

-1050

-787.5

0

\({\varepsilon }_{\mathit{yy}}\mathrm{\times }E\)

525.0

-175

-175

-350

-350

175

525

0

\({\varepsilon }_{\mathit{zz}}\mathrm{\times }E\)

262.5

700

700

-525

-525

525

-700

-262.5

0

\({\varepsilon }_{\mathit{xy}}\mathrm{\times }E\mathrm{/}(1+\nu )\)

700

350

350

1050

1050

-1050

-350

-700

0

\({\varepsilon }_{\mathit{xz}}\mathrm{\times }E\mathrm{/}(1+\nu )\)

-350

350

350

700

700

0

-700

700

0

\({\varepsilon }_{\mathit{yz}}\mathrm{\times }E\mathrm{/}(1+\nu )\)

0

700

-350

-350

0

350

-700

0

0

\(P\)

525

525

525

-175

-175

-525

-525

0

\(\mathrm{d1}\)

262.5

525

525

525

0

-525

-525

-262.5

0

\(\mathrm{d2}\)

262.5

-175

-175

350

350

0

-350

175

-262.5

0

This path is illustrated by the following graph:

_images/1000000000000318000002630F3FC811B946DA5C.png

1.4. Initial conditions#

Zero stresses and deformations.