Reference problem ===================== Geometry --------- We consider a reinforced concrete column of length :math:`\mathrm{0,7}m`, along the axis :math:`\mathrm{Ox}`, with a square cross section with a height and width equal to :math:`\mathrm{0,15}m`. .. image:: images/10000201000004370000032A7BF090CEAEEEB4A9.png :width: 3.3366in :height: 2.3764in .. _RefImage_10000201000004370000032A7BF090CEAEEEB4A9.png: Figure 1: reinforced concrete column section. The longitudinal frames are four :math:`\mathit{HA14}`. The transverse reinforcements are not taken into account in the models below. For modeling A, two reinforcing bars :math:`X` and :math:`Y` from :math:`\mathrm{2,053}\text{}{10}^{-3}{m}^{2}/m` are used. For modeling B, a single steel fiber with section :math:`\mathrm{6,15}{\mathit{mm}}^{2}` is used. Material properties ---------------------- The GLRC_DM law of behavior has the following parameters for concrete: * Young's modulus: :math:`E\mathrm{=}28500\mathit{MPa}` * Poisson's ratio: :math:`\nu \mathrm{=}0.2` * Maximum compression stress: :math:`{\sigma }_{c}=25\mathrm{MPa}` * Peak deformation under compression: :math:`{ϵ}_{c}=\mathrm{2,25}\mathrm{.}\text{}{10}^{-3}` * Maximum tensile stress: :math:`{\sigma }_{t}=\mathrm{2,94}\mathit{MPa}` The parameters for steel are: * Young's modulus: :math:`E\mathrm{=}195000\mathit{MPa}` * Poisson's ratio: :math:`\nu \mathrm{=}0.3` * Elastic limit: :math:`{\sigma }_{y}=610\mathrm{MPa}` * Tangent module (plastic slope): :math:`{E}_{t}\mathrm{=}\mathrm{19,5}\mathit{MPa}` The operator DEFI_GLRC is used to obtain the parameters of the GLRC_DM law. Concrete stress has been reduced to :math:`{\sigma }_{t}=\mathrm{1,6}\mathit{MPa}`. In addition, the parameters :math:`{\gamma }_{c}=\mathrm{0,35}` and :math:`{\alpha }_{c}=60` are also set for the non-linear behavior in compression. With these material data, the equivalent elastic modulus in membrane, cf. [R7.01.32], is equal to: :math:`{E}_{\mathrm{eq}}^{m}=34021.0\mathrm{MPa}`, i.e. membrane stiffness in the direction :math:`\mathrm{Ox}`: :math:`{E}_{\mathrm{eq}}^{m}\ast S=765.393\mathrm{MN}`. The DEFI_MATER_GC operator was used to determine the parameters of laws MAZARS_UNIL and VMIS_CINE_GC. Boundary conditions and loads ------------------------------------- One end of the beam, edge :math:`A`, is blocked and a distributed force of the resultant :math:`\mathit{FX}\mathrm{=}1\mathit{kN}` is imposed on the other end, edge :math:`B`, in the direction :math:`X`. .. image:: images/10000000000002E70000013FB108272238DBC57A.png :width: 5.5118in :height: 2.3661in .. _RefImage_10000000000002E70000013FB108272238DBC57A.png: .. _DdeLink__1171_2114786994: Figure 2: reinforced concrete column section. Charging cycles are defined by: .. csv-table:: ":math:`t` ", "Multiplying factor on the :math:`\mathit{FX}` force" ":math:`\mathrm{0,0}` "," :math:`\mathrm{0,0}`" ":math:`\mathrm{1,0}` "," :math:`\mathrm{-}250`" ":math:`\mathrm{3,0}` "," :math:`55`" ":math:`\mathrm{5,0}` "," :math:`\mathrm{-}365`" ":math:`\mathrm{7,0}` "," :math:`176`" ":math:`\mathrm{9,0}` "," :math:`\mathrm{-}490`" ":math:`\mathrm{11,0}` "," :math:`298`" ":math:`\mathrm{13,0}` "," :math:`\mathrm{-}675`" ":math:`\mathrm{15,0}` "," :math:`368`" ":math:`\mathrm{17,0}` "," :math:`\mathrm{-}790`" ":math:`\mathrm{19,0}` "," :math:`376`" Initial conditions -------------------- Nil.