Reference problem ===================== Geometry --------- Consider a reinforced concrete cube with side :math:`L\mathrm{=}1m`. .. image:: images/10000200000001CC0000015FEE937DCCD077ECF4.png :width: 2.9516in :height: 2.5457in .. _RefImage_10000200000001CC0000015FEE937DCCD077ECF4.png: The reinforcement sheets belong to the plane defined by the four :math:`\mathit{N05}\mathrm{-}\mathit{N02}\mathrm{-}\mathit{N03}\mathrm{-}\mathit{N08}` nodes. Two reinforcement layers are defined: one in the local direction :math:`X` and one in the local direction :math:`Y`. The reinforcement rate for each reinforcing sheet is :math:`0.1{m}^{2}\mathrm{/}\mathit{ml}` (Section per linear meter). Characteristics of the models ---------------------------------- The concrete mesh is modelled with a hexa8 element. The models considered for reinforcing plies are: • modeling A (§3): use of grid_membranewith tria3 support meshes • modeling B (§4): use of grid_membrane with quad4 support meshes • C modeling (§5): use of grille_excenter with tria3 support meshes Material properties ------------------------ The concrete material is isotropic elastic whose properties are: • :math:`{E}_{b}=20000\mathrm{MPa}` • :math:`\nu =0.2` The law of behavior of reinforcements follows an elastoplastic model whose properties are: • :math:`{E}_{a}=200000\mathrm{MPa}` • :math:`\nu =0` • :math:`{E}_{\mathrm{ecr}}^{\mathrm{acier}}=20000\mathrm{MPa}` • :math:`{\sigma }_{e}^{\mathrm{acier}}=200000\mathrm{MPa}` The grid_isot_line model for isotropic work hardening plasticity is used in stat_non_line. Boundary conditions and loads ------------------------------------- .. image:: images/10000200000001A5000001425BD1DA55CB9AE19C.png :width: 3.1063in :height: 2.5563in .. _RefImage_10000200000001A5000001425BD1DA55CB9AE19C.png: Boundary conditions: • Embedding in :math:`\mathit{A1}` • :math:`\mathit{DX}\mathrm{=}0` on the :math:`\mathit{A1}\mathrm{-}\mathit{A4}` ridge • :math:`\mathit{DY}\mathrm{=}0` on the :math:`\mathit{A1}\mathrm{-}\mathit{A2}` ridge • :math:`\mathrm{DZ}=0` on the bottom surface of the cube (N01-N02-N03-N04) Charging by mandatory trips: • :math:`\mathrm{DX}=1` on the :math:`\mathit{A2}\mathrm{-}\mathit{A3}` ridge • :math:`\mathit{DY}\mathrm{=}1t` on the :math:`\mathit{A3}\mathrm{-}\mathit{A4}` ridge where :math:`t` is the pseudotime parameter. Initial conditions -------------------- Initially, travel and constraints were zero everywhere.