Reference problem ===================== Geometry --------- .. image:: images/10000000000005B30000047DFCD6776F6FFADCA9.jpg :width: 3.2209in :height: 2.5417in .. _RefImage_10000000000005B30000047DFCD6776F6FFADCA9.jpg: The simple tensile test is carried out on a single isoparametric finite element of cubic shape :math:`\mathit{CUB}4`. The length of each edge is 1. The different facets of this cube are mesh groups named :math:`\mathrm{HAUT}`, :math:`\mathrm{BAS}`,, :math:`\mathrm{DEVANT}`, :math:`\mathrm{DERRIERE}`, :math:`\mathrm{DROIT}`, and :math:`\mathrm{GAUCHE}`. The mesh group *SYM* also contains the mesh groups :math:`\mathrm{BAS}`, :math:`\mathrm{DEVANT}` and :math:`\mathrm{GAUCHE}`; the group of elements :math:`\mathrm{COTE}` the mesh groups :math:`\mathrm{DERRIERE}` and :math:`\mathrm{DROIT}`. Material properties ----------------------- The elastic properties are: * * Young's modulus: :math:`E=1\mathit{MPa}` * Poisson's ratio: :math:`\mathrm{\nu }=\mathrm{0,25}` The traction limit is equal to :math:`{\mathrm{\sigma }}_{t}=1\mathit{kPa}` Boundary conditions and loads ------------------------------------- The simple tensile test consists in imposing a vertical elongation on the specimen while maintaining the lateral pressure constant and equal to the initial isotropic stress :math:`{P}_{0}=10\mathit{kPa}` In the model under consideration, the cubic element represents one eighth of the sample. The boundary conditions are therefore as follows: * * * Symmetry conditions: * :math:`{u}_{z}=0` on mesh group :math:`\mathrm{BAS}` * :math:`{u}_{x}=0` on mesh group :math:`\mathrm{GAUCHE}` * :math:`{u}_{y}=0` on mesh group :math:`\mathrm{DEVANT}` * Lateral pressure conditions: * :math:`{P}_{n}={P}_{0}=10\mathit{kPa}` on mesh groups :math:`\mathit{DROIT}` and :math:`\mathit{ARRIERE}` * Loading conditions: * :math:`{u}_{z}=+1` on mesh group :math:`\mathrm{HAUT}` The loading takes place in 30 steps of time between :math:`t=0` and :math:`t=30` during which the displacement imposed on the group of elements :math:`\mathrm{HAUT}` varies from :math:`{u}_{z}=0` to :math:`{u}_{z}=0.3` (total vertical deformation of :math:`30\text{\%}`). Results --------- The solutions are post-treated at point :math:`C`, in terms of: * vertical constraint :math:`{\mathrm{\sigma }}_{\mathit{zz}}`; * horizontal deformation :math:`{\mathrm{ϵ}}_{\mathit{xx}}`; * :math:`{e}^{P}=\Vert {e}^{P}\Vert` deviatoric plastic deformation norm They are compared to an analytical solution (described in the next paragraph) in terms of *maximum difference between* :math:`t=0` *and* :math:`t=20`.