Reference problem ===================== Geometry --------- .. image:: images/100000000000012C00000168470D7C91D38568BB.png :width: 3.1228in :height: 3.748in .. _RefImage_100000000000012C00000168470D7C91D38568BB.png: .. csv-table:: "Radius of sphere", ":math:`R=500\mathrm{mm}`" "Imposed displacement", ":math:`100\mathrm{mm}`" Material properties ---------------------- Two different models to represent the rigid sphere: Material stiffness: :math:`E=\mathrm{2,1E9}\mathrm{Mpa}` and :math:`\nu =\mathrm{0,3}` Stiffening by kinematic conditions Block: Steel, perfect elasto‑plastic behavior law. .. csv-table:: "Module Young", ":math:`E=210000\mathrm{MPa}`" "Poisson's Ratio", ":math:`\nu =\mathrm{0,3}`" "Work hardening module", ":math:`\mathrm{Et}=0`" "Elastic limit", ":math:`{\sigma }_{y}=50\mathrm{MPa}`" Boundary conditions and loads ------------------------------------- The deformations are axisymmetric and the block forming the plane is assumed to be embedded on its base. An imposed displacement is applied: * Loading from 0 to :math:`–100\mathrm{mm}` on the upper part of the sphere in models A and D * Loading from 0 to :math:`–100\mathrm{mm}` on the contact surface of the sphere in models B and C