1. Reference problem#

1.1. Geometry#

The problem is addressed at the hardware level.

1.2. Material properties#

The material obeys the law of behavior GTN, by activating the modeling of germination, by considering linear isotropic work hardening and by not introducing any coalescence. The characteristics are as follows, which vary according to the test version:

\(E=200000\text{MPa}\)

Young’s module

\(\mathrm{\nu }=0.3\)

Poisson’s ratio

\({R}_{0}=500\text{MPa}\)

Work hardening (constant term)

\({R}_{H}=1000\text{MPa}\)

Work hardening (linear term)

\({q}_{1}=1.5\)

Damage parameter

\({q}_{2}=1.0\)

Damage parameter

\({f}_{0}={10}^{-3}\)

Initial porosity

test case A

test case B

\({f}_{n}=0.1\)

\({f}_{n}=0\)

Gaussian Germination NUCL_GAUSS_PORO

\({p}_{n}=0.2\)

Gaussian Germination NUCL_GAUSS_PLAS

\({s}_{n}=0.03\)

Gaussian Germination NUCL_GAUSS_DEV

\({c}_{0}=0.03\)

\({c}_{0}=0\)

Germination slot NUCL_CRAN_PORO

\({\kappa }_{i}=0.1\)

Germination slot NUCL_CRAN_INIT

\({\kappa }_{f}=0.2\)

Germination slot NUCL_CRAN_FIN

\({b}_{0}=0\)

\({b}_{0}=0.50\)

Linear germination NUCL_EPSI_PENTE

\({E}_{\mathit{eq}0}^{p}=0.05\)

Linear germination NUCL_EPSI_INIT

1.3. Boundary conditions and loads#

Constraint \(T\) is imposed in a purely deviatory form:

(1.1)#\[ T= {T} _ {\ mathit {eq}} {D}} {D} ^ {0}}\ text {;} {D} ^ {0} =\ left [\ begin {array} {ccc}\ frac {2} {3} {3}} {3}} {3}\ 0& -\ frac {1} {3} {3}\ end array}\ right]\]

The constraint is increasing from 0 to \({T}_{\mathit{eq}}=628.95\text{MPa}\) for test case A and \({T}_{\mathit{eq}}=608.93\text{MPa}\)

1.4. Initial conditions#

Natural initial conditions (zero internal variables, zero deformations).